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Preface

The purpose of these notes is to present some of the standard procedures of numerical linear al-
gebra from the perspective of a user and not a computer specialist. You will not find extensive
error analysis or programming details. The purpose is to give the user a general idea of what the
numerical procedures are doing. You can find more extensive discussions in the references

e Applied Numerical Linear Algebra by J. Demmel, SIAM 1997
e Numerical Linear Algebra by L. Trefethen and D. Bau, Siam 1997

e Matrix Computations by G. Golub and C. Van Loan, Johns Hopkins University Press 1996

The notes are divided into four chapters. The first chapter presents some of the notation used in
this paper and reviews some of the basic results of Linear Algebra. The second chapter discusses
methods for solving linear systems of equations, the third chapter discusses eigenvalue problems,
and the fourth discusses iterative methods. Of course we cannot discuss every possible method,
so I have tried to pick out those that I believe are the most used. I have assumed that the user has
some basic knowledge of linear algebra.



Chapter 1

Mathematical Preliminaries

In this chapter we will describe some of the notation that will be used in these notes and review
some of the basic results from Linear Algebra.

1.1 Matrices and Vectors

A matrix is a two-dimensional array of real or complex numbers arranged in rows and columns. If
a matrix A has m rows and n columns, we say that it is an m X n matrix. We denote the element in
the i-th row and j-th column of A by a;;. The matrix A is often written in the form

aix - din
A=
Am1 *°* Amn
We sometimes write A = (ay,...,a,) where ay,...,a, are the columns of A. A vector (or

n-vector) is an n X 1 matrix. The collection of all n-vectors is denoted by R" if the elements
(components) are all real and by C” if the elements are complex. We define the sum of two
m X n matrices componentwise, i.e., the i, entry of A + B is a;; + b;j. Similarly, we define the
multiplication of a scalar « times a matrix A to be the matrix whose i,j component is aa;;.

If A is a real matrix with components a;;, then the transpose of A (denoted by AT) is the matrix
whose i,j componentis a;;,1.e. rows and columns are interchanged. If A is a matrix with complex
components, then A is the matrix whose i, j -th component is the complex conjugate of the j,i-th
component of 4. We denote the complex conjugate of a by @. Thus, (Af);; = @;;. A real matrix
A is said to be symmetric if A = AT. A complex matrix is said to be Hermitian if 4 = AH.
Notice that the diagonal elements of a Hermitian matrix must be real. The n X n matrix whose
diagonal components are all one and whose off-diagonal components are all zero is called the
identity matrix and is denoted by 1.



If A is an m x k matrix and B is an k x n matrix, then the product AB is the m x n matrix with
components given by

k
(AB)ij = Z Clirbrj.

r=1
The matrix product AB is only defined when the number of columns of A is the same as the
number of rows of B. In particular, the product of an m x n matrix 4 and an n-vector x is given by

(Ax); = Zaikxk i=1,...,m.
k=1

It can be easily verified that /A = A if the number of columns in / equals the number of rows
in A. It can also be shown that (AB)T = BT AT and (AB)# = BH AH In addition, we have
(AT = A and (AT)H = A.

1.2 Vector Spaces

R"” and C" together with the operations of addition and scalar multiplication are examples of a
structure called a vector space. A vector space V is a collection of vectors for which addition and
scalar multiplication are defined in such a way that the following conditions hold:

p—

. If x and y belong to V and « is a scalar, then x + y and ax belong to V.

2. x +y =y + x for any two vectors x and y in V.

het

X+ (y +z) = (x + y) + z for any three vectors x, y, and z in V.
4. There is a vector 0 in 'V such that x + 0 = x for all x in V.

5. For each x in 'V there is a vector —x in 'V such that x 4+ (—x) = 0.
6. (¢f)x = a(pBx) for any scalars o, f and any vector x in V.

7. 1x = x forany x in V.

8. a(x +y) = ax + ay forany x and y in 'V and any scalar «.

9. (¢ + B)x = ax + Bx for any x in V and any scalars «, S.

A subspace of a vector space V is a subset that is also a vector space in its own right.



1.2.1 Linear Independence and Bases

A set of vectors vy, ..., v, is said to be linearly independent if the only way we can have oyv; +
o4+ av =0isfora; = -+ = o = 0. A set of vectors vy, ..., v, is said to span a vector
space V if every vector x in 'V can be written as a linear combination of the vectors vy, ..., vy, i.e.,
X = a1x1 + -+ + oy x,. The set of all linear combinations of the vectors vy, ..., v, is a subspace
denoted by < vy,...,v, > and called the span of these vectors. If a set of vectors vy, ..., v, is
linearly independent and spans V it is called a basis for V. If a vector space 'V has a basis consisting
of a finite number of vectors, then the space is said to be finite dimensional. In a finite-dimensional
vector space every basis has the same number of vectors. This number is called the dimension of
the vector space. Clearly R” and C” have dimension n. Let e denote the vector in R” or C” that
consists of all zeroes except for a one in the k-th position. It is easily verified that ey, ..., e, is a
basis for either R” or C”.

1.2.2 Inner Product and Orthogonality

If x and y are two n-vectors, then the inner (dot) product x - y is the scaler value defined by x y.
If the vector space is real we can replace x by x”. The inner product x - y has the properties:

I.y-x=X-y
2. x-(ay) =a(x-y)
3.x-(y+z)=x-y+x-z
4. x-x>0and x - x = 0ifand only if x = 0.
Vectors x and y are said to be orthogonal if x - y = 0. A basis vy, ..., v, is said to be orthonormal
if
0 .
Ui'vj={ Z#J
I i=

We define the norm || x| of a vector x by ||x|| = V/x-x = \/|)c1|2 + -+ + |x,|%. The norm has
the properties

L fleex| = feef |l x|l

2. ||x|| = 0 implies that x = 0

3ol +yl = lxl+ Iyl

If vq,...,v, is an orthonormal basis and x = «ojv; + --- + o,V,, then it can be shown that
|x]|> = |a1]® + + -+ + |ax|?. The norm and inner product satisfy the inequality

lx -y < x| |yl Cauchy Inequality



1.2.3 Matrices As Linear Transformations

An m x n matrix A can be considered as a mapping of the space R” (C") into the space R” (C™)
where the image of the n-vector x is the matrix-vector product Ax. This mapping is linear, i.e.,
A(x + y) = Ax 4+ Ay and A(ax) = aAx. The range of A (denoted by Range(A4)) is the space
of all m-vectors y such that y = Ax for some n-vector x. It can be shown that the range of A is
the space spanned by the columns of A. The null space of A (denoted by Null(A)) is the vector
space consisting of all n-vectors x such that Ax = 0. An n X n square matrix A is said to be
invertible if it is a one-to-one mapping of the space R” (C”) onto itself. It can be shown that a
square matrix A is invertible if and only if the null space Null(A) consists of only the zero vector.
If A is invertible, then the inverse A~! of A4 is defined by A~!y = x where x is the unique n-vector
satisfying Ax = y. The inverse has the properties A™'A = AA™! = [ and (AB)™' = B~14A~L.
We denote (A™1)7 and (A7)~ by A7T.

If A is an m X n matrix, x is an n-vector, and y is an m-vector; then it can be shown that

(Ax)-y = x-(Ay).

1.3 Derivatives of Vector Functions

The central idea behind differentiation is the local approximation of a function by a linear func-
tion. If f is a function of one variable, then the locus of points (x, f(x)) is a plane curve €. The
tangent line to € at (x, f (x)) is the graphical representation of the best local linear approximation
to f at x. We call this local linear approximation the differential. We represent this local linear
approximation by the equation dy = f’(x)dx. If f is a function of two variables, then the locus
of points (x, v, f(x, y)) represents a surface §. Here the best local linear approximation to f at
(x, y) is graphically represented by the tangent plane to the surface § at the point (x, v, f(x, y)).
We will generalize this idea of a local linear approximation to vector-valued functions of n vari-
ables. Let f be a function mapping n-vectors into m-vectors. We define the derivative Df(x) of
f at the n-vector x to be the unique linear transformation (m x n matrix) satisfying

f(x+h) = f(x)+ Df)h +o(|Al) (1.
whenever such a transformation exists. Here the o notation signifies a function with the property

(L
o ]

0.

Thus, Df(x) is a linear transformation that locally approximates f .

We can also define a directional derivative & f(x) in the direction & by

fe+A—f0)  d
7 =7 f(x + Ah) o (1.2)

Sn f(x) = lim



whenever the limit exists. This directional derivative is also referred to as the variation of f in the
direction h. If Df(x) exists, then

on f(x) = Df(x)h.

However, the existence of &, f(x) for every direction /2 does not imply the existence of Df(x). If

we take h = e;, then &, f(x) is just the partial derivative _3}3:(69[6).

1.3.1 Newton’s Method

Newton’s method is an iterative scheme for finding the zeroes of a smooth function f. If x is a
guess, then we approximate f near x by

f(x+h)= f(x)+ Df(x)h.

If x + h is the zero of this linear approximation, then

h=—(Df(x))" f(x)

or

Xx+h=x—(Dfx)" f(x). (1.3)

We can take x + & as an improved approximation to the nearby zero of f. If we keep iterating
with equation (1.3), then the (k + 1)-iterate x**1 is related to the k-iterate x*) by

L&D R (Df(x(k)))_lf(x(k)). (1.4)

10



Chapter 2

Solution of Systems of Linear Equations

2.1 Gaussian Elimination

Gaussian elimination is the standard way of solving a system of linear equations Ax = b when
A is a square matrix with no special properties. The first known use of this method was in the
Chinese text Nine Chapters on the Mathematical Art written between 200 BC and 100 BC. Here
it was used to solve a system of three equations in three unknowns. The coefficients (including
the right-hand-side) were written in tabular form and operations were performed on this table to
produce a triangular form that could be easily solved. It is remarkable that this was done long
before the development of matrix notation or even a notation for variables. The method was used
by Gauss in the early 1800s to solve a least squares problem for determining the orbit of the asteroid
Pallas. Using observations of Pallas taken between 1803 and 1809, he obtained a system of six
equations in six unknowns which he solved by the method now known as Gaussian elimination.
The concept of treating a matrix as an object and the development of an algebra for matrices were
first introduced by Cayley [2] in the paper A Memoir on the Theory of Matrices.

In this paper we will first describe the basic method and show that it is equivalent to factoring the
matrix into the product of a lower triangular and an upper triangular matrix, i.e., A = LU. We
will then introduce the method of row pivoting that is necessary in order to keep the method stable.
We will show that row pivoting is equivalent to a factorization PA = LU or A = PLU where P
is the identity matrix with its rows permuted. Having obtained this factorization, the solution for a
given right-hand-side b is obtained by solving the two triangular systems Ly = Pbhand Ux =y
by simple processes called forward and backward substitution.

There are a number of good computer implementations of Gaussian elimination with row pivoting.
Matlab has a good implementation obtained by the call [L,U,P]=1u(A). Another good implemen-
tation is the LAPACK routine SGESV (DGESV,CGESYV). It can be obtained in either Fortran or C

from the site www.netlib.org.

We will end by showing how the accuracy of a solution can be improved by a process called

11



iterative refinement.

2.1.1 The Basic Procedure

Gaussian elimination begins by producing zeroes below the diagonal in the first column, i.e.,

X X X X X X
X X ... X 0 x ... X

— | . . P 2.1
X X ... X 0 x ... X

If a;; is the element of A in the i-th row and the j-th column, then the first step in the Gaussian
elimination process consists of multiplying A on the left by the lower triangular matrix L given
by

1 0 O 0
—6121/6111 1 0 0
Ly=| —as/an 0 1 , (2.2)
: : . 0
—anl/au 0o ... 0 1

i.e., zeroes are produced in the first column by adding appropriate multiples of the first row to the
other rows. The next step is to produce zeroes below the diagonal in the second column, i.e.,

X X X ... X
X X X
0 X X X
0 x X
_ — | 0 0 x x 1. (2.3)
0 x x 0 0 x ... x

This can be obtained by multiplying L A on the left by the lower triangular matrix L, given by

1 0 0 0 0
0 1 0 O 0
0 —a/al) 1 0 0
La=1o —a0ud o 1 0 2.4)
: : : .0
0 —aD/al) 0 0 1
where al(jl) is the 7, j-th element of L A. Continuing in this manner, we can define lower triangular
matrices L3, ..., L,y sothat L,y --- L; A is upper triangular, i.e.,

Ly1---L1A="U. (2.5)

12



Taking the inverses of the matrices L, ..., L,—1, we can write A as
A= Ll_1 ---L;llU. (2.6)

Let
L=L"--L",. (2.7

Then it follows from equation (2.6) that
A=1LU. (2.8)
We will now show that L is lower triangular. Each of the matrices L can be written in the form
Ly =1—-u®el (2.9)

where ey, is the vector whose components are all zero except for a one in the k-th position and 1 *)
is a vector whose first k components are zero. The term u(k)ekT is an n X n matrix whose elements
are all zero except for those below the diagonal in the k-th column. In fact, the components of 1 *)
are given by

0 1<i<k
u® = == 2.10
U, (k 1)/a(k Do (2.10)
where a(k Dis the i, j-th element of Lx_y---L;A. Since ekTu(k) = u,(ck) = 0, it follows that
(I + u(k)ekT)(I — u(k)ekT) =1+ u(k)ekT — u(k)ekT — u(k)ekTu(k)ekT
=T —u®(efu®)el
=1, (2.11)
ie.,
L' =1 +u®e]. (2.12)

Thus, L,:l is the same as Lj except for a change of sign of the elements below the diagonal in
column k. Combining equations (2.7) and (2.12), we obtain

L= +uWel)--- (I +u Vel ) =1T+uWel .- +ul"Del (2.13)

n 1
In this expression the cross terms dropped out since
u(i)eiTu(j)ejT = ul(j)u(i)ejT =0 fori < j.

Equation (2.13) implies that L is lower triangular and that the k-th column of L looks like the k-th
column of L with the signs reversed on the elements below the diagonal, i.e.,

1 0 0 ... 0
6121/6111 1 0 0

L= | asi/an 12)/61(1) 1o, (2.14)
anl/au (1)/61(1) 1

13



Having the LU factorization given in equation (2.8), it is possible to solve the system of equations
Ax =LUx =b

for any right-hand-side b. If we let y = Ux, then y can be found by solving the triangular system
Ly = b. Having y, x can be obtained by solving the triangular system Ux = y. Triangular
systems are very easy to solve. For example, in the system Ux = y, the last equation can be
solved for x, (the only unknown in this equation). Having x,, the next to the last equation can be
solved for x,_; (the only unknown left in this equation). Continuing in this manner we can solve
for the remaining components of x. For the system Ly = b, we start by computing y; and then
work our way down. Solving an upper triangular system is called back substitution. Solving a
lower triangular system is called forward substitution.

To compute L requires approximately n3/3 operations where an operation consists of an addition
and a multiplication. For each right-hand-side, solving the two triangular systems requires approx-
imately n? operations. Thus, as far as solving systems of equations is concerned, having the LU
factorization of A is just as good as having the inverse of A and is less costly to compute.

2.1.2 Row Pivoting

There is one problem with Gaussian elimination that has yet to be addressed. It is possible for
one of the diagonal elements a,(jc_l) that occur during Gaussian elimination to be zero or to be
very small. This causes a problem since we must divide by this diagonal element. If one of the
diagonals is exactly zero, the process obviously blows up. However, there can still be a problem
if one of the diagonals is small. In this case large elements are produced in both the L and U
matrices. These large entries lead to a loss of accuracy when there are subtractions involving these
big numbers. This problem can occur even for well behaved matrices. To eliminate this problem
we introduce row pivoting. In performing Gaussian elimination, it is not necessary to take the
equations in the order they are given. Suppose we are at the stage where we are zeroing out the
elements below the diagonal in the k-th column. We can interchange any of the rows from the
k-th row on without changing the structure of the matrix. In row pivoting we find the largest in
magnitude of the elements a,(jc_l), a,(ck_;ll,}c, ... ,a,(ﬁc_l) and interchange rows to bring that element
to the k, k-position. Mathematically we can perform this row interchange by multiplying on the
left by the matrix Py that is like the identity matrix with the appropriate rows interchanged. The
matrix Py has the property Py Px = I, i.e., Pk is its own inverse. With row pivoting equation (2.5)
is replaced by
Ln_IPn_l"'L2P2L1P1A: U (215)
We can write this equation in the form
Ln—l(Pn—an—an__ll)(Pn—lPn—ZLn—SPn__lan__ll) tee
(Pa—1- PaLy Pyt o P ) (Pacy - P)A = U. (2.16)

Define L),_, = L,—; and
v = Po1- Py L Pl - P k=1,...,n-2. (2.17)

n—1

14



Then equation (2.16) can be written
(Lj_y -+ Ly)(Puer -+ P1)A = U. (2.18)

Note that multiplying by P; on the left only modifies rows j up to n. Similarly, multiplying by
PJ._1 = P; on the right only modifies columns j up to n. Therefore,

L, = (Pn—l "'Pk+1)(l + u(k)e,?)(PkH "'Pn—l)
=1+ (Pn—l "'Pk+1)u(k)€1€(Pk+1 "'Pn—l)
— [ 40T (2.19)

where v® is like u®) except the components k + 1 to n are permuted by P,_1 -+ Pe1. Since L),
has the same form as Ly, it follows that the matrix L = (L))" --- (L} _,)~" is lower triangular.
Thus, if we define P = P,_; --- Py, equation (2.18) becomes

PA = LU. (2.20)

Of course, in practice we don’t need to explicitly construct the matrix P since the interchanges can
be kept tract of using a vector. To solve a system of equations Ax = b we replace the system by
PAx = Pb and proceed as before.

It is also possible to do column interchanges as well as row interchanges, but this is seldom used in
practice. By the construction of L all its elements are less than or equal to one in magnitude. The
elements of U are usually not very large, but there are some peculiar cases where large entries can
appear in U even with row pivoting. For example, consider the matrix

1 0 O 01
—1 1 O 01
A= -1 -1
: : 0 1
-1 -1 1 1
-1 -1 -1 ... -1 1

In the first step no pivoting is necessary, but the elements 2 through n in the last column are
doubled. In the second step again no pivoting is necessary, but the elements 3 through n are
doubled. Continuing in this manner we arrive at

Although growth like this in the size of the elements of U is theoretically possible, there are no
reports of this ever having happened in the solution of a real-world problem. In practice Gaussian
elimination with row pivoting has proven to be very stable.

15



2.1.3 Iterative Refinement

If the solution of Ax = b is not sufficiently accurate, the accuracy can be improved by applying
Newtons method to the function f(x) = Ax — b. If x®) is an approximate solution to f(x) = 0,
then a Newton iteration produces an approximation x**1 given by

ck+D — ) _ (Df(x(k)))_lf(x(k)) = x® _ A_I[Ax(k) —b]. (2.2D)

An iteration step can be summarized as follows:

1. compute the residual r® = Ax® — p;
2. solve the system Ad®) = r® using the LU factorization of A;

3. Compute x*+D = x®) _ g&)

The residual is usually computed in double precision. If the above calculations were carried out
exactly, the answer would be obtained in one iteration as is always true when applying Newton’s
method to a linear function. However, because of roundoff errors, it may require more than one
iteration to obtain the desired accuracy.

2.2 Cholesky Factorization

Matrices that are Hermitian (A" = A) and positive definite (x Ax > 0 for all x # 0) occur
sufficiently often in practice that it is worth describing a variant of Gaussian elimination that is
often used for this class of matrices. Recall that Gaussian elimination amounted to a factorization
of a square matrix A into the product of a lower triangular matrix and an upper triangular matrix,
i.e., A = LU. The Cholesky factorization represents a Hermitian positive definite matrix 4 by the
product of a lower triangular matrix and its conjugate transpose, i.e., A = LL*. Because of the
symmetries involved, this factorization can be formed in roughly half the number of operations as
are needed for Gaussian elimination.

Let us begin by looking at some of the properties of positive definite matrices. If e; is the i-th
column of the identity matrix and A = (a;;) is positive definite, then a;; = eiT Ae; > 0, 1.e., the
diagonal components of A are real and positive. Suppose X is a nonsingular matrix of the same
size as the Hermitian, positive definite matrix A. Then

xE(XHEAX)x = (Xx)HPA(Xx) >0  forallx # 0.

Thus, A Hermitian positive definite implies that X 7 AX is Hermitian positive definite. Conversely,
suppose X 7 AX is Hermitian positive definite. Then

A= XXHEAXX ) =X HEXHEAX)(X™Y)  is Hermitian positive definite.

16



Next we will show that the component of largest magnitude of a Hermitian positive definite matrix
A always lies on the diagonal. Suppose that |ag;| = max; ;|a;;| and k # 1. If ag; = |ag|e'%%, let
o = —e "% and x = e} + ae;. Then

xHAx = ef Aey +ae] Aex + ael Ae; + |a?e] Ae; = agk + ay —2laxi| < 0.

This contradicts the fact that A is positive definite. Therefore, max; j|a;;| = max; a;;. Suppose
we partition the Hermitian positive definite matrix A as follows

B cH
=(¢ %)
If y is a nonzero vector compatible with D, let x = (0, y). Then

H o\ (B CH)(O) H
x7Ax = (0, = Dy >0,
0,y )(C p J\y) =y Dy

i.e., D is Hermitian positive definite. Similarly, letting x = (y#,0), we can show that B is
Hermitian positive definite.

We will now show that if A is a Hermitian, positive-definite matrix, then there is a unique lower
triangular matrix L with positive diagonals such that A = LL*. This factorization is called the
Cholesky factorization. We will establish this result by induction on the dimension n. Clearly, the
result is true for n = 1. For in this case we can take L = (4/a1;). Suppose the result is true for
matrices of dimension n — 1. Let A be a Hermitian, positive-definite matrix of dimension n. We
can partition A as follows

H
_[(dn w
A= ( w K ) (2.22)
where w is a vector of dimension n — 1 and K is a (n — 1) x (n — 1) matrix. It is easily verified that
H 1 0
_[(an w _ pH
A_(w K)_B (O K_waul,:{)B (2.23)
where

wH
B = ( o «/6111). (2.24)

0 1

We will first show that the matrix B is invertible. If

H H
A a W Jannx, + XX
Bx = ! Van (xl) = e Jai | =0,
0 1 X2 X2

then x, = 0 and /a;1x1 = x; = 0. Therefore, B is invertible. From our discussion at the
beginning of this section it follows from equation (2.23) that the matrix

1 0
0 k— ww
arl
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is Hermitian positive definite. By the results on the partitioning of a positive definite matrix, it

follows that the matrix

wwh

K —
ai

is Hermitian positive definite. By the induction hypothesis, there exists a unique lower triangular
matrix L with positive diagonals such that

wwh

K — —[i7, (2.25)

ai

Substituting equation (2.25) into equation (2.23), we get

10 1 0\(1 0 a0\ (a
11

which is the desired factorization of A. To show uniqueness, suppose that

H H
_[(dn w _1110 lii v
a= () =00 D0 i) @)
is a Cholesky factorization of A. Equating components in equation (2.27), we see that /7 i1 =dau
and hence that [/{; = /a11. Also lllv =worv = w/111 = w//ay;. Finally, vv H[[H_ K
or K—vvH = K —ww# /a;; = LLH. Since LL* is the unique factorization of the (n — 1) x
(n — 1) Hermitian, positive-definite matrix K — wwt /a1, we see that the Cholesky factorization

of A is unique. It now follows by induction that there is a unique Cholesky factorization of any
Hermitian, positive-definite matrix.

The factorization in equation (2.23) is the basis for the computation of the Cholesky factorization.
The matrix B¥ is lower triangular. Since the matrix K — wwh /ay is positive definite, it can
be factored in the same manner. Continuing in this manner until the center matrix becomes the
identity matrix, we obtain lower triangular matrices L1, ..., L, such that

A=1Ly---L,L7...L7
Letting L = L; --- L,, we have the desired Cholesky factorization.

As was mentioned previously, the number of operations in the Cholesky factorization is about half
the number in Gaussian elimination. Unlike Gaussian elimination the Cholesky method does not
need pivoting in order to maintain stability. The Cholesky factorization can also be written in the
form

A=LDL"

where D is diagonal and L now has all ones on the diagonal.
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2.3 Elementary Unitary Matrices and the QR Factorization

In Gaussian elimination we saw that a square matrix A could be reduced to triangular form by
multiplying on the left by a series of elementary lower triangular matrices. This process can also
be expressed as a factorization A = LU where L is lower triangular and U is upper triangular. In
least squares problems the number of rows m in A is usually greater than the number of columns
n. The standard technique for solving least-squares problems of this type is to make use of a
factorization A = QR where Q is an m X m unitary matrix and R has the form

R
R =
0
with R an n x n upper triangular matrix. The usual way of obtaining this factorization is to
reduce the matrix A to triangular form by multiplying on the left by a series of elementary unitary
matrices that are sometimes called Householder matrices (reflectors). We will show how to use
this QR factorization to solve least square problems. If Q is the m x n matrix consisting of the
first n columns of Q, then
A= 0OR.
This factorization is called the reduced QR factorization. Elementary unitary matrices are also

used to reduce square matrices to a simplified form (Hessenberg or tridiagonal) prior to eigenvalue
calculation.

There are several good computer implementations that use the Householder QR factorization to
solve the least squares problem. The LAPACK routine is called SGELS (DGELS,CGELS). In
Matlab the solution of the least squares problem is given by A\b. The QR factorization can be
obtained with the call [Q,R]=qr(A).

2.3.1 Gram-Schmidt Orthogonalization

A reduced QR factorization can be obtained by an orthogonalization procedure known as the

Gram-Schmidt process. Suppose we would like to construct an orthonormal set of vectors gy, ..., qn
from a given linearly independent set of vectors ay, ...,a,. The process is recursive. At the j-th
step we construct a unit vector g; that is orthogonal to g, ..., gj—; using

Jj—1
v =a; — Y (¢ a;)qi
i=1

aj = v;/llvjll.
The orthonormal basis constructed has the additional property

<dqi,...,q; >=<aiy,...,a; > j=12,...,n.
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If we consider ay, ..., a, as columns of a matrix A, then this process is equivalent to the matrix
factorization A = QAIQ where Q = (41,...,9x) and R is upper triangular. Although the Gram-
Schmidt process is very useful in theoretical considerations, it does not lead to a stable numerical
procedure. In the next section we will discuss Householder reflectors, which lead to a more stable
procedure for obtaining a QR factorization.

2.3.2 Householder Reflections

Let us begin by describing the Householder reflectors. In this section we will restrict ourselves to
real matrices. Afterwards we will see that there are a number of generalizations to the complex

case. If v is a fixed vector of dimension m with ||v|| = 1, then the set of all vectors orthogonal to v
is an (m — 1)-dimensional subspace called a hyperplane. If we denote this hyperplane by H, then
H={u: viu=0. (2.28)

Here v7 denotes the transpose of v. If x is a point not on H, let X denote the orthogonal projection
of x onto H (see Figure 2.1). The difference x — x must be orthogonal to A and hence a multiple
of v, i.e.,

X—X=0ov or X=Xx+aov. (2.29)

Figure 2.1: Householder reflection

Since X lies on H and v7v = ||v||? = 1, we must have

r v=vlx+a=0. (2.30)

vIx =vlx +av’

T

Thus, « = —v* x and consequently

F=x—WIx)v=x—vvlx={ —-vv))x. (2.31)
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Define P = I — vv”. Then P is a projection matrix that projects vectors orthogonally onto H.
The projection x is obtained by going a certain distance from x in the direction —v. Figure 2.1
suggests that the reflection X of x across H can be obtained by going twice that distance in the
same direction, i.e.,

F=x—-20wTx)v=x—-2vvTx = —2vv7)x. (2.32)

With this motivation we define the Householder reflector Q by

0=1-20w" |v|=1. (2.33)
An alternate form for the Householder reflector is
2 T
0=1-""2 (2.34)
[Jull

where here u is not restricted to be a unit vector. Notice that, in this form, replacing u by a multiple
of u does not change Q. The matrix Q is clearly symmetric, i.e., Q7 = Q. Moreover,

070 = 0% = - 2001 —20vT) =T — 2007 — 2007 + 4T 0T =1, (2.35)

i.e., Q is an orthogonal matrix. As with all orthogonal matrices Q preserves the norm of a vector,
i.e.,
10x]* = (0x)"0x = x" QT Ox = x"x = |x|*. (2.36)

To reduce a matrix to one that is upper triangular it is necessary to zero out columns below a certain
position. We will show how to construct a Householder reflector so that its action on a given vector
x is a multiple of ey, the first column of the identity matrix. To zero out a vector below row k we
can use a matrix of the form I o

2=(o o)

where [ is the (k —1) x (k — 1) identity matrix and Q is a (m —k + 1) x (m —k + 1) Householder
matrix. Thus, for a given vector x we would like to choose a vector u so that Q x is a multiple of
the unit vector e, i.e.,

2ulx
Ox =x— ﬁu = «ae;. (2.37)
u
Since Q preserves norms, we must have |«| = ||x||. Therefore, equation (2.37) becomes
2ulx
Ox =x— |(| “2)14 = £ x|e;. (2.38)
u

It follows from equation (2.38) that ¥ must be a multiple of the vector x F ||x|le;. Since u can be
replaced by a multiple of ¥ without changing Q, we let

u=xF|x|e;. (2.39)
It follows from the definition of u in equation (2.39) that

ul x = ||)c||2 F |lx]lx1 (2.40)
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and

lull> = wu = |x|* F llxllx1 F llxllxr + [lx]I> = 2(]|x]|* F [lx]lx1). (2.41)
Therefore,
2uTx)
— =1, (2.42)
]|

and hence Q x becomes

2(uTx
Qx=x—ﬁu =x—u = *|x|e; (2.43)
u
as desired. From what has been discussed so far, either of the signs in equation (2.39) would
produce the desired result. However, if x; is very large compared to the other components, then it
is possible to lose accuracy through subtraction in the computation of u = x F ||x||e;. To prevent
this we choose u to be

u = x + sign(xy)||x||es (2.44)
where sign(x) is defined by
1 >0
sign(x)) =4 T M2 (2.45)
—1 X1 < 0.

With this choice of u, equation (2.43) becomes
Ox = —sign(xy)|x|es. (2.46)
In practice, u is often scaled so that u; = 1, i.e.,

_x +sign(xy) | x|leq

. . (2.47)
x1 + sign(xy)||x|
With this choice of u,

2| x|l

lull* = : (2.48)
el 4 fox1
The matrix Q applied to a general vector y is given by
T
u

Qy=y—=2 “tuZ u. (2.49)

2.3.3 Complex Householder Matrices

Thee are several ways to generalize Householder matrices to the complex case. The most obvious

is to let

uutl

[
where the superscript H denotes conjugate transpose. It can be shown that a matrix of this form
is both Hermitian (U = U%) and unitary (U#U = I). However, it is sometimes convenient

U=1-2
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to be able to construct a U such that U x is a real multiple of e;. This is especially true when
converting a Hermitian matrix to tridiagonal form prior to an eigenvalue computation. For in this
case the tridiagonal matrix becomes a real symmetric matrix even when starting with a complex
Hermitian matrix. Thus, it is not necessary to have a separate eigenvalue routine for the complex
case. It turns out that there is no Hermitian unitary matrix U, as defined above, that is guaranteed to
produce a real multiple of e;. Therefore, linear algebra libraries such as LAPACK use elementary
unitary matrices of the form

U=1I-ocww? (2.50)

where o can be complex. These matrices are not in general Hermitian. If U is to be unitary, we
must have

1 =U"U = (I —sww(I —oww?) =1 -G +0 —|o)? |w||H)ww?

and hence
lo)? [|lw]|* = 2Re(0). (2.51)

Notice that replacing w by w/n and o by |n|?c in equation (2.50) leaves U unchanged. Thus, a
scaling of w can be absorbed in 0. We would like to choose w and o so that

Ubx = x —c(wix)w = y|x|e (2.52)

where y = =£1. It can be seen from equation (2.52) that w must be proportional to the vector
x — ¥ ||x||e1. Since the factor of proportionality can be absorbed in o, we choose

w=x—Y|x|ei. (2.53)
Substituting this expression for w into equation (2.52), we get
Ubx = x —5(wlx)(x — y ||x|ler) = 1 —owix)x +Ty(wx)|x|le; = y|x|er. (2.54)

Thus, we must have

1
g(wix) =1 or 0= (2.55)
xHw
This choice of o gives
Ufx = ylxller.
It follows from equation (2.53) that
xMw = ||x|? =y [|x[¥7 (2.56)
and
lwli* = 7 =y Ixller) (x =y llxller) = I1x)> =y lxlx =y IxF7 + [lx])?
= 2(llx[I* = ¥ x| Re(x1)) (2.57)
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Thus, it follows from equations (2.55)—(2.57) that

2R o 1 1
e0) _ 0 L Hy 4wl
lo|? 00 o O
= (Ix1? =y lIxlIx7) + (Ix[1* = v [lx]x1)
= 2([| x> = 2 [l x[| Re(x1))

= [lw|,

i.e., the condition in equation (2.51) is satisfied. It follows that the matrix U defined by equation
(2.50) is unitary when w is defined by equation (2.53) and o is defined by equation (2.55). As
before we choose y to prevent the loss of accuracy due to subtraction in equation (2.53). In this
case we choose y = —sign(Re(x)). Thus, w becomes

w = x + sign(Re(xy))]|x]les. (2.58)

Let us define a real constant v by

v = sign(Re(xy))[lx||. (2.59)
With this definition w becomes
w=Xx + ve;. (2.60)
It follows that
xw = x| +vxr =2+ X = v(v + X7), (2.61)
and hence |
v(v + X7) (262)

In LAPACK w is scaled so that w; = 1, i.e.,

X +ve;

= . 2.63
v X1 +v ( )
With this w, o becomes
_ |x1 + v_|2 _ (x1 + v)(x_i—l— V) _ XAt v 2.64)
v(v + X7) v(v 4+ X7) V

Clearly this o satisfies the inequality

Ia—ll=m:msl. (2.65)
vl x|

It follows from equation (2.64) that o is real when x; is real. Thus, U is Hermitian when x; is real.

An alternate approach to defining a complex Householder matrix is to let

2ww

U=1-"—-—
[w]l?

(2.66)
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This U is Hermitian and

viu - (1 2wwh . 2wwh _ 2wwf 2wwh N 4w |Pwwf _ 1 @6
[wl|? [wl|? [wl>  [lw]? Jwi|* C

i.e., U is unitary. We want to choose w so that

2wH x

— w = |[x[lex (2.68)
Jwl

where |y| = 1. Multiplying equation (2.68) by x, we get

Ufx =Ux =x—

xBUx = xHU"x = xHUx =y ||x|*7. (2.69)
Since x Ux is real, it follows that yXxy is real. If x; = |x; |ei‘91, then y must have the form
y = £e'%. (2.70)

It follows from equation (2.68) that w must be proportional to the vector x F e%1||x|e,. Since
multiplying w by a constant factor doesn’t change U, we take

w=x Fe'%x|e;. (2.71)
Again, to avoid accuracy problems, we choose the plus sign in the above formula, i.e.,

w=x +e"%x|le;. (2.72)
It follows from this definition that

lwl? = (x + e |xller) (x + e | xler)

= [lx|I? + |xalllxl + [xalllx ] + [lx)? = 20 x N (Ix] + |x1]) (2.73)
and
whx = (x7 + e xlle] )x = |xI? + e xi x| = x| (Ix]| + |x1l). (2.74)
Therefore, .
2w x
— =1, (2.75)
w2
and hence . .
Ur=x—w=x—(x+e%|x]er) = —e'%|x|ei. (2.76)

This alternate form for the Householder matrix has the advantage that it is Hermitian and that the
multiplier of ww* is real. However, it can’t in general map a given vector x into a real multiple of
e1. Both EISPACK and LINPACK use elementary unitary matrices similar to this. The LAPACK
form is not Hermitian, involves a complex multiplier of ww®, but can produce a real multiple of
e; when acting on x. As stated before, this can be a big advantage when reducing matrices to
triangular form prior to an eigenvalue computation.
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2.3.4 Givens Rotations

Householder matrices are very good at producing long strings of zeroes in a row or column. Some-
times, however, we want to produce a zero in a matrix while altering as little of the matrix as
possible. This is true when dealing with matrices that are very sparse (most of the elements are al-
ready zero) or when performing many operations in parallel. The Givens rotations can sometimes
be used for this purpose. We will begin by considering the case where all matrices and vectors are
real. The complex case will be considered in the next section.

R = (o8 6 —sind
~ \sinf  cos6
rotates a 2-vector counterclockwise through an angle 8. If we let ¢ = cos# and s = sin 6, then
the matrix R can be written as
c —s
s ¢

where ¢? 4 5% = 1. If x is a 2-vector, we can determine ¢ and s so that Rx is a multiple of e;.
Since
cX1p —SX
Rx = ( ! 2),
sX1 +cxp

R will have the desired property if ¢ = x1/1/x] + x5 and s = —x»//x] + x5. In fact Rx =

2 2
VX7 + x3er.

Givens matrices are an extension of this two-dimensional rotation to higher dimensions. For j > i,
the givens matrix G(i, j ) is an m x m matrix that performs a counterclockwise rotation in the (i, j)
coordinate plane. It can be obtained by replacing the (i,7) and (j, j) components of the m x m
identity matrix by c, the (i, j) component by —s and the (j, i) component by s. It has the matrix
form

The two-dimensional matrix

col i col j
1
1
TOW I c —s
G(@i,j)= (2.77)
row j s c
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where ¢? + s2 = 1. The matrix G(i, j) is clearly orthogonal. In terms of components

| k=1lk#iandk # j
c k=lLk=iork=j

Gl ji = ~s k=il=]j . (2.78)
s k=j,l=i

0  otherwise
Multiplying a vector by G(i, j ) only affects the i and j components. If y = G(i, j)x, then

Xk k #iandk # j
Yk = {CXj — SX; k=i . (2.79)
sxi +cx; k=]

Suppose we want to make y; = 0. We can do this by setting

c = S and s = _—xj. (2.80)
NEaE NETE
With this choice for ¢ and s, y becomes
Xk k#iandk # j
Ve = xP+x; k=i : (2.81)
0 k=]

Multiplying a matrix A on the left by G (7, j) only alters rows i and j. Similarly, Multiplying A
on the right by G (i, j) only alters columns i and j

2.3.5 Complex Givens Rotations

For the complex case we replace R in the previous section by
R = (C _i) where c is real. (2.82)
It can be easily verified that R is unitary if and only if ¢ and s satisfy
e+ |s]? = 1.
Given a 2-vector x, we want to choose R so that Rx is a multiple of e;. For R unitary, we must

have
Rx = y|x|lex where |y| = 1. (2.83)
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Multiplying equation (2.83) by R, we get

¥ = RRx =yl Rer =yl £, (280
or
c = al and s = 2 . (2.85)
Il Il

We define sign(u) for u complex by

0
sign(u) = ) W/l w7 (2.86)
1 u =0.
If ¢ is to be real, y must have the form
y = e sign(x;) € = =*1.
With this choice of y, ¢ and s become
= x| and s = —_xz (2.87)
€|lx|l e sign(xq) || x|l

If we want the complex case to reduce to the real case when x; and x, are real, then we can
choose € = sign(Re(xl)). As before, we can construct G (i, j) by replacing the (i,7) and (J, )
components of the identity matrix by c, the (i, j) component by —s, and the (j,7) component by
s. In the expressions for ¢ and s in equation (2.87), we replace x; by x;, x» by x;, and ||x|| by

V12 g 2.

2.3.6 QR Factorization Using Householder Reflectors

Let A be an m x n matrix with m > n. Let Q1 be a Householder matrix that maps the first column
of A into a multiple of e;. Then QA will have zeroes below the diagonal in the first column. Now

let Lo
Q2= (o Qz)

where QZ is an (m — 1) x (m — 1) Householder matrix that will zero out the entries below the

diagonal in the second column of Q; A. Continuing in this manner, we can construct Q», ..., Q,—1
so that R
R

On-1--014A= (O) (2.88)

where R is ann x n triangular matrix. The matrices QO have the form
I 0
= N 2.89
Ok (O Qk) (2.89)
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where Qk isan (m —k + 1) x (m — k + 1) Householder matrix. If we define

0" =Q,1---0y and R= (5), (2.90)

then equation (2.88) can be written
0HA=R. (2.91)

Moreover, since each Qy is unitary, we have
070 =(Qnr--- 000 ) =1, (2.92)
i.e., Q is unitary. Therefore, equation (2.91) can be written
A= QR. (2.93)

Equation (2.93) is the desired factorization. The operations count for this factorization is approxi-
mately mn? where an operation is an addition and a multiplication. In practice it is not necessary
to construct the matrix Q explicitly. Usually only the vectors v defining each Qj are saved.

If Q is the matrix consisting of the first n columns of Q, then
A=0OR (2.94)

where Q is a m x n matrix with orthonormal columns and R is a n x n upper triangular matrix.
The factorization in equation (2.94) is the reduced QR factorization.

2.3.7 Uniqueness of the Reduced QR Factorization

In this section we will show that a matrix A of full rank has a unique reduced QR factorization if
we require that the triangular matrix R has positive diagonals. All other reduced QR factorizations
of A are simply related to this one with positive diagonals.

The reduced QR factorization can be written

r riz2 -+ TIn
Fao -+ T2

A= (ar,az....an) = (q1.92, ... .qn) N b (2.95)
rnn

If A has full rank, then all of the diagonal elements r;; must be nonzero. Equating columns in
equation (2.95), we get

J Jj—1
aj = E Tkjqk = Tjjqj + E Tkjqk
k=1 k=1
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or

1 s
G = @~ 3 resan) (296
Tjj k=1
When j = 1 equation (2.96) reduces to
g1 = a—l- (2.97)
I
Since ¢; must have unit norm, it follows that
lril = llai. (2.98)

Equations (2.97) and (2.98) determine ¢; and r;; up to a factor having absolute value one, i.e.,
there is a d; with |d;| = 1 such that

rin = difn C]1=d—
where }/"\11 = ||611|| and él = Cll/l/"\ll.

For j = 2, equation (2.96) becomes

1
q> = —(612 — ”126]1)-
ra2

Since the columns ¢, and g, must be orthonormal, it follows that

1
0=qgfq=—@qFar—rp)
ra2
and hence that
ryp = Q{—Iaz = dlé{{az. (299)
Here we have used the fact that d_1 = 1/d,. Since ¢, has unit norm, it follows that
1 1 AH A 1 AH A
1 = ||gz2ll = —llaz —ri2q1l| = —llaz — (d14y" a2)q1/d1|| = —lla> — (4" a2)q:||
|r22] |r22] |72z
and hence that
r22| = |laz — (§F a2)q1|| = 2.

Therefore, there exists a scalar d, with |d»| = 1 such that
r2 = dafz and q> = C}z/dz
where éz = (612 — (é{{az)él)/l/’\zz.

For j = 3, equation (2.96) becomes

1
q3 = —(613 —rizqi — ”236]2)-
r33
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Since the columns ¢4, g2 and g3 must be orthonormal, it follows that

1
0= 6]{{6]3 = E(Qf{as —r13)

1
0=4q3qs = a(qfas —123)

and hence that
H ~H
riz =(¢q; az = d1q1 as

H ~H
13 = (5 az = d2q5 as.

Since g3 has unit norm, it follows that

1 1 . . N N
1= lgsll = —llas — rizq1 — r23q2 || = —llas — (G a3)g1 — (G5’ az)ga|
|733] |733]

and hence that
r3s] = llas — (§17 a3) g1 — (§2" az)g> || = #33.

Therefore, there exists a scalar d3 with |d3z| = 1 such that

ryz = d3}/"\33 and q3z = é3/d3 (2100)
where §; = (a3 — (cleag,)cfl — (cszag,)cfz)/fg,g,. Continuing in this way we obtain the unitary
matrix O = (1. ...,{») and the triangular matrix

Fii Pz cer T
B Fop cvv Topn

A
rnn

such that 4 = QAIQ is the unique reduced QR factorization of A with R having positive diagonal
elements. If A = QR is any other reduced QR factorization of A, then

di
R = R

and
l/dl dl

0=0 - =0 -
1/d, d,

where |dq| = -+ = |d,| = 1.
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2.3.8 Solution of Least Squares Problems

In this section we will show how to use the QR factorization to solve the least squares problem.
Consider the system of linear equations
Ax =Db (2.101)

where A is an m X n matrix with m > n. In general there is no solution to this system of equa-
tions. Instead we seek to find an x so that ||Ax — b|| is as small as possible. In view of the QR
factorization, we have

|4x = b)> = |QRx = b|* = [|Q(Rx — Q" b)||* = | Rx — 0" b]|*. (2.102)

We can write Q in the partitioned form Q = (Q1, Q) where Q1 is an m x n matrix. Then

oo (§)-(E)- (o) e

It follows from equation (2.103) that
|Rx — @7b|* = | Rx — Q'bI* + | 057bI*. (2.104)
Combining equations (2.102) and (2.104), we get
| Ax = bI* = ||1Rx — Qf'b|I* + | 05 bII*. (2.105)

It can be easily seen from this equation that || Ax — b|| is minimized when x is the solution of the
triangular system .
Rx = Qb (2.106)

when such a solution exists. This is the standard way of solving least square systems. Later we will
discuss the singular value decomposition (SVD) that will provide even more information relative
to the least squares problem. However, the SVD is much more expensive to compute than the QR
decomposition.

2.4 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is one of the most important and probably one of the
least well known of the matrix factorizations. It has many applications in statistics, signal process-
ing, image compression, pattern recognition, weather prediction, and modal analysis to name a
few. It is also a powerful diagnostic tool. For example, it provides approximations to the rank and
the condition number of a matrix as well as providing orthonormal bases for both the range and
the null space of a matrix. It also provides optimal low rank approximations to a matrix. The SVD
is applicable to both square and rectangular matrices. In this regard it provides a general solution
to the least squares problem.
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The SVD was first discovered by differential geometers in connection with the analysis of bilinear
forms. Eugenio Beltrami [1] (1873) and Camille Jordan [10] (1874) independently discovered
that the singular values of the matrix associated with a bilinear form comprise a complete set
of invariants for the form under orthogonal substitutions. The first proof of the singular value
decomposition for rectangular and complex matrices seems to be by Eckart and Young [5] in 1939.
They saw it as a generalization of the principal axis transformation for Hermitian matrices.

We will begin by deriving the SVD and presenting some of its most important properties. We will
then discuss its application to least squares problems and matrix approximation problems. Follow-
ing this we will show how singular values can be used to determine the condition of a matrix (how
close the rows or columns are to being linearly dependent). We will conclude with a brief outline
of the methods used to compute the SVD. Most of the methods are modifications of methods used
to compute eigenvalues and vectors of a square matrix. The details of the computational methods
are beyond the scope of this presentation, but we will provide references for those interested.

2.4.1 Derivation and Properties of the SVD

Theorem 1. (Singular Value Decomposition) Let A be a nonzero m X n matrix. Then there exists
an orthonormal basis Uy, ..., U, of m-vectors, an orthonormal basis v4, ..., v, of n-vectors, and
positive numbers o1, . .., 0, such that

1. uy,...,u, is a basis of the range of A

2. Urg1,...,Uy is a basis of the null space of A

r H
30 A=) orurvy .

Proof: Af A is a Hermitian n x n matrix that is positive semidefinite. Therefore, there is an

orthonormal basis vy, ..., v, and nonnegative numbers 012, ... ,a,f such
AT Avg = oo k=1,...,n. (2.107)
Since A is nonzero, at least one of the eigenvalues o7 must be positive. Let the eigenvalues be
arranged so that 67 > 05 > --- > 07 > Oand 07, ; = --- = 0, = 0. Consider now the vectors
Avq, ..., Av,. We have
(Av)) T Av; = v/TA" Av; = 67vfTv; =0 i # ], (2.108)
ie., Avy,..., Av, are orthogonal. When i = j
||Av,-||2=viHAHAv,-=0izviHv,-=0i2>O i=1,...,r
=0 i >r. (2.109)
Thus, Av,4q1 = -+ = Av, = 0 and hence v+, ..., v, belong to the null space of A. Define
Ui,...,Ur by
u; = (1/0;)Av; i=1,...,r (2.110)
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Then uy, ..., u, is an orthonormal set of vectors in the range of A that span the range of A. Thus,
Ui,...,U, 1s a basis for the range of A. The dimension r of the range of A is called the rank of
A. If r < m, we can extend the set uy,...,u, of orthonormal vectors to an orthonormal basis
Ui,...,Un of m-space using the Gram-Schmidt process. If x is an n-vector, we can write x in

terms of the basis vq,..., v, as
n

X = Z(v,f’x)vk. (2.111)

k=1
It follows from equations (2.110) and (2.111) that

Ax =) () Ave = > (v X)okur = Y oxugvi x. (2.112)
k=1 k=1 k=1

Since x in equation (2.112) was arbitrary, we must have
A=) orurvf. (2.113)
k=1

The representation of A in equation (2.113) is called the singular value decomposition (SVD). If
x belongs to the null space of A (Ax = 0), then it follows from equation (2.112) and the linear
independence of the vectors uy, ..., u, that v,f’ x =0fork = 1,...,r. It then follows from
equation (2.111) that

n
x= Y fou.
k=r+1

i.e., Vr41,..., U, span the null space of A. Since v,41,..., v, are orthonormal vectors belonging
to the null space of A, they form a basis for the null space of A.

We will now express the SVD in matrix form. Define U = (uy,...,uy), V = (v1,...,v,), and
S = diag(oy,...,0r). If r < min(m.n), then the SVD can be written in the matrix form
_ (S O\yH
A—U(O O)V ) (2.114)

If r = m < n, then the SVD can be written in the matrix form
A=U(S oV (2.115)

If r = n < m, then the SVD can be written in the matrix form

A= U(g)VH. (2.116)

If r = m = n, then the SVD can be written in the matrix form

A=USVH, (2.117)
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Generally we write the SVD in the form (2.114) with the understanding that some of the zero
portions might collapse and disappear.

We next give a geometric interpretation of the SVD. For this purpose we will restrict ourselves to

the real case. Let x be a point on the unit sphere, i.e., || x|| = 1. Since uy, ..., u, is a basis for the
range of A, there exist numbers yy, ..., yx such that
r
Ax = Z ViUk
k=1
r
T
= Z ok (Vi X)u.
k=1
Therefore, yx = crk(vax), k = 1,...,r. Since the columns of V' form an orthonormal basis, we
have

n
X = Z(va X) V.
k=1
Therefore,

x> =Y (] x)? =1.
k=1

It follows that

Vi v}
S+t L =)+ + (0 x)? <1
on 0;
Here equality holds when r = n. Thus, the image of x lies on or interior to the hyper ellipsoid
with semi axes ojuq,...,0,u,. Conversely, if y;, ..., y, satisfy
2 2
y_; 4+ 4 y_r2 <1,
on 0;

we define a® = 1— ), _,(vk/ox)* and

-
Yk

X = E —Vk + 0Vp41.
(o]
=1k

Since v, 4 is in the null space of A and Avgy = oxuy (k < r), it follows that

r k r
Ax = Z ();—kAvk + aAv, 41 = Zykuk.
= k=1

In addition,
r 2

y
P =Y 2 ot =1,
k=1 k
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Thus, we have shown that the image of the unit sphere ||x|| = 1 under the mapping A is the hyper
ellipsoid

2 2
y_; + -+ y_r2 <1
oj 0;
relative to the basis uy,...,u,. When r = n, equality holds and the image is the surface of the
hyper ellipsoid
2 2
y_; + -+ y_r2 =1.
01 Gn

2.4.2 The SVD and Least Squares Problems

In least squares problems we seek an x that minimizes |Ax — b||. In view of the singular value
decomposition, we have

2

0 0

(S 2)ra- ]

2

| Ax — b|? = U(S O)VHx _b

2

= (O O)V x=U"b| . (2.118)
If we define
y = (yl) —yHy (2.119)
Y2
b= (lﬁl) = UHp. (2.120)
by
then equation (2.118) can be written
Sy, — b \|? R R
lAx —b|* = H( ylé 1) = [ISy1 = ball” + (1621, (2.121)
—U2

It is clear from equation (2.121) that || Ax — b|| is minimized when y; = S ~1p,. Therefore, the y
that minimizes ||Ax — b|| is given by

17
y= (S ) bl) v, arbitrary. (2.122)
2

In view of equation (2.119), the x that minimizes ||Ax — b|| is given by

S,

x=Vy:V( V2

) v, arbitrary. (2.123)
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Since V' is unitary, it follows from equation (2.123) that
lx[1Z = 187 be )1 + [l y2l*.

Thus, there is a unique x of minimum norm that minimizes || Ax — b||, namely the x corresponding

to y» = 0. This x is given by
S71h,
=V
= (%)

(57 0\ (b
-(% o)(zsz)

(ST 0\, m
v (% o)vr.

The matrix multiplying b on the right-hand-side of this equation is called the generalized inverse
of A and is denoted by A7, i.e.,

—1
At = V(SO 8)UH. (2.124)

Thus, the minimum norm solution of the least squares problem is given by x = A*h. The n x m
matrix A" plays the same role in least squares problems that A~! plays in the solution of linear
equations. We will now show that this definition of the generalized inverse gives the same result
as the classical Moore-Penrose conditions.

Theorem 2. If A has a singular value decomposition given by

_u(S O\yp=
A_U(O O)V,

then the matrix X defined by

—1
X =A%t = V(SO 8)UH

is the unique solution of the Moore-Penrose conditions:

1. AXA= A
2. XAX = X

3. (AX)H = AX
4. (XA)H = XA.
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Proof:

Il
<
e N
S
o o
Nl N

|
~

1.e., X satisfies condition (1).

STV 0N, m (S O\m, (SN O\, u
XAX_V(O O)U U(O O)V V(O o)V

1.e., X satisfies condition (2). Since
_ S O\, g, (St 0\, xn _ I 0\, g
AX_U(O O)V V( 0 O)U —U(O O)U
_ STV O0\.,.54..(S O\, m _ I 0\, xg
XA_V( 0 O)U U(O O)V _V(O O)V ,

it follows that both AX and XA are Hermitian, i.e., X satisfies conditions (3) and (4). To show
uniqueness let us suppose that both X and Y satisfy the Moore-Penrose conditions. Then

and

X = XAX  by(2)
= X(AX)H = XXHA®H  by(3)
= XXTAYA? = XXHARYHAH by (1)
= XXTARA)? = XxXH AT AY by (3)
= X(AX)7AY = XAXAY by (3)
= XAY by (2)
= X(AYA)Y  by(1)
= XA(YA)Y = XAYA)HY = XA47Y "y by 4)
= (XA)TA" Y Hy = AHXHAHYHYy by (4)
= (AXAIYHY = AHYHY by (1)
= (YA)HY =YAY by @)
=Y  by(@).

Thus, there is only one matrix X satisfying the Moore-Penrose conditions.
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2.4.3 Singular Values and the Norm of a Matrix

Let A be an m x n matrix. By virtue of the SVD, we have

,
Ax = Z crk(v,f’x)uk for any n-vector x. (2.125)
k=1
Since the vectors u1, ..., u, are orthonormal, we have
r r
lAx|? =) " oZlvf xI? <0 > v x|* < of||x||*. (2.126)
k=1 k=1

The last inequality comes from the fact that x has the expansion x = Y ;_, (v,f’ X) Vg in terms of
the orthonormal basis vy, ..., v, and hence

n

H
REEDMTE

k=1
Thus, we have
|Ax|| <oillx]|  forall x. (2.127)
Since Avy = ojuy, we have ||Avy|| = o1 = o1]|v1||. Hence,
| Ax||
X = 01, (2.128)
x#0 [|x|]

i.e., A can’t stretch the length of a vector by a factor greater than o;. One of the definitions of the

norm of a matrix is
_ o Ax])
| Al = sup ——. (2.129)
x#o |1X]
It follows from equations (2.128) and (2.129) that || A|| = o7 (the maximum singular value of A).

If A is of full rank (r=n), then it follows by a similar argument that

| Ax] _
o x|

ne

If Ais an m x n matrix and B is an n X p matrix, then for every p-vector x we have
IABx| < (Al | Bx[l < Al B [lx]

and hence || AB| < || 4] || B]l.

2.4.4 Low Rank Matrix Approximations

You can think of the rank of a matrix as a measure of redundancy. Matrices of low rank should
have lots of redundancy and hence should be capable of specification by less parameters than the
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total number of entries. For example, if the matrix consists of the pixel values of a digital image,
then a lower rank approximation of this image should represent a form of image compression. We
will make this concept more precise in this section.

One choice for a low rank approximation to A is the matrix Ay = Zle aiuiviH fork <r. Ay is
a truncated SVD expansion of 4. Clearly

A=Ay = > o], (2.130)
i=k+1

Since the largest singular value of A — Ay is 0k 41, we have

A = Akl = k1. (2.131)

Suppose B is another m x n matrix of rank k. Then the null space N of B has dimensionn—k. Let
wi,...,W,—k be abasis for N. The n + 1 n-vectors wy, ..., Wy—k, V1,..., V41 must be linearly
dependent, i.e., there are constants oy, ...,a,— and By, ..., Br+1, not all zero, such that

n—k k+1

Zaiwi + Z,B,-v,- =0.

i=1 i=1
Not all of the «; can be zero since vy, ..., Vx4 are linearly independent. Similarly, not all of the

Bi can be zero. Therefore, the vector /& defined by

n—k k+1
h = Zaiwi = —Z,B,-v,-
i=1 i=1
is a nonzero vector that belongs to both N and < vy,...,vk+; >. By proper scaling, we can
assume that / is a vector with unit norm. Since 4 belongs to < vy, ..., Vk+1 >, we have
k+1
h=>Y fhu. (2.132)
i=1
Therefore,
k+1
1117 = Iof AP (2.133)
i=1
Since Av; = oju; fori = 1,...,r, it follows from equation (2.132) that
k+1 k+1
Ah =3 " hyAvi =) @ hoiu;. (2.134)
i=1 i=1
Therefore,
k+1 k+1
AR =) i hPo? = of, Y i hI> = oy, I (2.135)

i=1 i=1
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Since & belongs to the null space N, we have
14— BII> = (A = B)h||*> = | AR|* = o1, |hII* = o, (2.136)
Combining equations (2.131) and (2.136), we obtain
|A—=B| = ok41 = [|[A— Ak]. (2.137)

Thus, Ay is the rank k£ matrix that is closest to A.

2.4.5 The Condition Number of a Matrix

Suppose A is an n x n invertible matrix and x is the solution of the system of equations Ax = b.
We want to see how sensitive x is to perturbations of the matrix A. Let x 4+ éx be the solution to
the perturbed system (A + 8A4)(x 4+ 6x) = b. Expanding the left-hand-side of this equation and
neglecting the second order perturbations 64 §x, we get

SAx +A8x =0 or Sx=—-A"164x. (2.138)
It follows from equation (2.138) that
18x[l < A7 [ 8Allx]
" I8x1/lx]
m < [IA7' 1Al (2.139)
The quantity ||AY|||| 4| is called the condition number of A and is denoted by «(A), i.e.,
k(A) = [|[ A7 ]I All
Thus, equation (2.139) can be written

181/ x

0 < k(4). (2.140)
IBA[/[IA]
We have seen previously that ||A|| = oy, the largest singular value. Since A~! has the singular
value decomposition A~! = VS~'U# it follows that |A~!|| = 1/0,. Therefore, the condition
number is given by
(d) = 2L, (2.141)

n

The condition number is sort of an aspect ratio of the hyper ellipsoid that A maps the unit sphere
into.
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2.4.6 Computation of the SVD

The methods for calculating the SVD are all variations of methods used to calculate eigenvalues
and eigenvectors of Hermitian Matrices. The most natural procedure would be to follow the deriva-
tion of the SVD and compute the squares of the singular values and the unitary matrix V' by solving
the eigenproblem for A¥ A. The U matrix would then be obtained from AV . Unfortunately, this
procedure is not very accurate due to the fact that the singular values of AT A are the squares of the
singular values of A. As a result the ratio of largest to smallest singular value can be much larger
for A A than for A. There are, however, implicit methods that solve the eigenproblem for A7 A
without ever explicitly forming A A. Most of the SVD algorithms first reduce A4 to bidiagonal
form (all elements zero except the diagonal and first superdiagonal). This can be accomplished
using householder reflections alternately on the left and right as shown in figure 2.2.

X X X X x x 0 0

0 x x x 0 x x x
Ay =UFA=10 x x «x — A=AV =|0 x x x —

0 x x x 0 x x x

0 x x x 0 x x x

x x 00 x x 0 0

0 x x x 0 x x O
As=Uf4,=[0 0 x «x — Ay=A3Vo=|0 0 x x —

0 0 x x 0 0 x x

0 0 x x 0 0 x x

x x 00 x x 0 0

0 x x O 0 x x O
As=UfA,=|0 0 x «x — A¢=UFAs=]10 0 x «x

0 0 0 x 0 0 0 x

0 0 0 x 0 0 0 O

Figure 2.2: Householder reduction of a matrix to bidiagonal form.

Since the application of the Householder reflections on the right don’t try to zero all the elements
to the right of the diagonal, they don’t affect the zeroes already obtained in the columns. We have
seen that, even in the complex case, the Householder matrices can be chosen so that the resulting
bidiagonal matrix is real. Notice also that when the number of rows m is greater than the number
of columns 7, the reduction produces zero rows after row n. Similarly, when n > m, the reduction
produces zero columns after column m. If we replace the products of the Householder reflections
by the unitary matrices U and V, the reduction to a bidiagonal B can be written as

B=U"4V o A=UBVH, (2.142)
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If B hasthe SVD B = UX VT, then A4 has the SVD
A=U00ZVvTHYWH = @o)svV)? =UuzvH,

where U = UU and V = V' V. Thus, it is sufficient to find the SVD of the real bidiagonal matrix
B. Moreover, it is not necessary to carry along the zero rows or columns of B. For if the square
portion B; of B has the SVD B; = UIZ’IVIT, then

(B _ (UZ VI (Ui O\(Z1\, 7
)G YE e

T
B = (B1,0) = (U Z1V[,0) = U1(21,0)(I(/)1 (I)) : (2.144)

Thus, it is sufficient to consider the computation of the SVD for a real, square, bidiagonal matrix
B.

or

In addition to the implicit methods of finding the eigenvalues of B B, some methods look instead
T T

B . _ T 0 B
B O)' IftheSVDofBlsB—UEV,then(B O)hasthe

0 BT\(V V V V(X 0
(B O)(U —U):(U —U)(O —2)' (2.145)
BT
B 0

at the symmetric matrix (

eigenequation

In addition, the matrix ( ) can be reduced to a real tridiagonal matrix 7" by the relation

T =PTBP (2.146)

where P = (e1,€n+1,€2,€n+2,...,€n,€2,) is a permutation matrix formed by a rearrangement
of the columns ey, es,..., e, of the 2n x 2n identity matrix. The matrix P is unitary and is
sometimes called the perfect shuffle since its operation on a vector mimics a perfect card shuffle of
the components. The algorithms based on this double size Symmetric matrix don’t actually form
the double size matrix, but make efficient use of the symmetries involved in this eigenproblem.
For those interested in the details of the various SVD algorithms, I would refer you to the book by
Demmel [4].

In Matlab the SVD can be obtained by the call [U,S,V]=svd(A).In LAPACK the general driver
routines for the SVD are SGESVD, DGESVD, and CGESVD depending on whether the matrix is
real single precision, real double precision, or complex.
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Chapter 3

Eigenvalue Problems

Eigenvalue problems occur quite often in Physics. For example, in Quantum Mechanics eigen-
values correspond to certain energy states; in structural mechanics problems eigenvalues often
correspond to resonance frequencies of the structure; and in time evolution problems eigenvalues
are often related to the stability of the system.

Let A be an m x m square matrix. A nonzero vector x is an eigenvector of A and A is its corre-
sponding eigenvalue, if
Ax = Ax.

The set of vectors
V), ={x:Ax = Ax}

is a subspace called the eigenspace corresponding to A. The equation Ax = Ax is equivalent to
(A —AI)x = 0. If A is an eigenvalue, then the matrix A — A/ is singular and hence

det(A — AI) = 0.

Thus, the eigenvalues of A are roots of a polynomial equation of order n. This polynomial equation
is called the characteristic equation of A. Conversely, if p(z) = ag+a1z +-+-+ap,—1z" ' +a,z"
is an arbitrary polynomial of degree n (a, # 0), then the matrix

O —Clo/an
1 0 —ai/an
10 —as/an

| :

0 _an—2/an
1 _an—l/an

has p(z) = 0 as its characteristic equation.

In some problems an eigenvalue A might correspond to a multiple root of the characteristic equa-
tion. The multiplicity of the root A is called its algebraic multiplicity. The dimension of the space
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V, is called its geometric multiplicity. If for some eigenvalue A of A, the geometric multiplicity
of A does not equal its geometric multiplicity, this eigenvalue is said to be defective. A matrix
with one or more defective eigenvalues is said to be a defective matrix. An example of a defective
matrix is the matrix

This matrix has the single eigenvalue 2 with algebraic multiplicity 3. However, the eigenspace
corresponding to the eigenvalue 2 has dimension 1. All the eigenvectors are multiples of e;. In
these notes we will only consider eigenvalue problems involving Hermitian matrices (47 = A).
We will see that all such matrices are non defective.

If S is a nonsingular m x m matrix, then the matrix S~ AS is said to be similar to A. Since
det(ST'AS — AI) = det(S™(A — AI)S) = det(S™") det(4 — AI) det(S) = det(A — A1),

it follows that S ! AS and A have the same characteristic equation and hence the same eigenvalues.
It can be shown that a Hermitian matrix A always has a complete set of orthonormal eigenvectors.
If we form the unitary matrix U whose columns are the eigenvectors belonging to this orthonormal
set, then

AU=UA or UPAU =24 3.1)

where A is a diagonal matrix whose diagonal entries are the eigenvalues. Thus, a Hermitian matrix
is similar a diagonal matrix. Since a diagonal matrix is clearly non defective, it follows that all
Hermitian matrices are non defective.

If e is a unit eigenvector of the Hermitian matrix A and A is the corresponding eigenvalue, then
Ae = Ae and hence A =e"Ae.

It follows that A = (e Ae)? = e AHe = e e = A, ie., the eigenvalues of a Hermitian
matrix are real.

It was shown by Abel, Galois and others in the nineteenth century that there can be no alge-
braic expression for the roots of a polynomial equation whose order is greater than four. Since
eigenvalues are roots of the characteristic equation and since the roots of any polynomial are the
eigenvalues of some matrix, there can be no purely algebraic method for computing eigenvalues.
Thus, algorithms for finding eigenvalues must at some stage be iterative in nature. The methods
to be discussed here first reduce the Hermitian matrix A4 to a real, symmetric, tridiagonal matrix
T by means of a unitary similarity transformation. The eigenvalues of 7" are then found using
certain iterative procedures. The most common iterative procedures are the QR algorithm and the
divide-and-conquer algorithm.
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3.1 Reduction to Tridiagonal Form

The reduction to tridiagonal form can be done with Householder reflectors. I will illustrate the
procedure with a 5 x 5 matrix A4, i.e.,

X X X X X
X X X X X
A= x x x x X
X X X X X
X X X X X

We can zero out the elements in the first column from row three to the end using a Householder

reflector of the form
1 O
Uy = (O ; )

This reflector does not alter the elements of the first row. Thus, multiplying U; A on the right
by UH zeros out the elements of the first row from column three on and doesn’t affect the first
column. Hence,

040 =

S O X X
X X X X X
X X X ©
X X X ©
X X X X ©

0

Moreover, the Householder reflector can be chosen so that the 12 element and the 21 element are
real. We can continue in this manner to zero out the elements below the first subdiagonal and
above the first superdiagonal. Furthermore, the Householder reflectors can be chosen so that the
super and sub diagonals are real. The diagonals of the resulting tridiagonal matrix are real since the
transformations have preserved the Hermitian property. Collecting the products of the Householder
reflectors into a unitary matrix U, we have

X X

UAUP =T or A=U"TU
where T' is a real, symmetric, tridiagonal matrix. Since A and T are similar, they have the same

eigenvalues. Thus, we only need eigenvalue routines for real symmetric matrices. In the following
sections we will assume that the matrix A is real and symmetric

3.2 The Power Method

The power method is one of the oldest methods for obtaining the eigenvectors of a matrix. It is
no longer used for this purpose because of its slow convergence, but it does underlie some of the
practical algorithms. Let vy, v,,..., v, be an orthonormal basis of eigenvectors of the matrix A
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and let Aq,..., A, be the corresponding eigenvalues. We will assume that the eigenvalues and
eigenvectors are so ordered that

|A1] = Az = oo = |An].

We will assume further that |[A;| > |A,|. Let v be an arbitrary vector with ||v|| = 1. Then there
exist constants cq, ..., ¢, such that

vV =c1V1 + -+ cpuy. (3.2)

We will make the further assumption that ¢; # 0. Successively applying A to equation (3.2), we
obtain
Ak = e A%y + - 4 e AR, = A v -+ Ak, (3.3)

You can see from equation (3.3) that the term ¢;A¥v; will eventually dominate and thus A4%v,
if properly scaled at each step to prevent overflow, will approach a multiple of the eigenvector
vy. This convergence can be slow if there are other eigenvalues close in magnitude to A;. The
condition ¢; # 0 is equivalent to the condition

<v>N<uv,,...,v, >= {0}

3.3 The Rayleigh Quotient

The Rayleigh quotient of a vector x is the real number

xT Ax

xTx

r(x) =

If x is an eigenvector of A corresponding to the eigenvalue A, then r(x) = A. If x is any nonzero
vector, then

|Ax —ax||? = (xTAT —axT)(Ax —ax)
= xT AT Ax — 2axT Ax + o®xTx
= xT AT Ax = 2ar(x)xTx + o®xTx + r2(x)xTx — r2(x)xTx

= xTAT Ax 4+ xTx(a — r()c))2 —r2(x)xTx.

Thus, « = r(x) minimizes ||Ax — ax||. If x is an approximate eigenvector, then r(x) is an
approximate eigenvalue.

3.4 Inverse Iteration with Shifts

For any w that is not an eigenvalue of A, the matrix (A — uI)~! has the same eigenvectors as A
and has eigenvalues (A; — u)~! where {1, } are the eigenvalues of A. Suppose u is close to the
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eigenvalue A;. Then (A; —u)~! will be large compared to (A; — )~ for j # i. If we apply power
iteration to (A — 1) ™!, the process will converge to a multiple of the eigenvector v; corresponding
to A;. This procedure is called inverse iteration with shifts. Although the power method is not used
in practice, the inverse power method with shifts is frequently used to compute eigenvectors once
an approximate eigenvalue has been obtained.

3.5 Rayleigh Quotient Iteration

The Rayleigh quotient can be used to obtain the shifts at each stage of inverse iteration. The
procedure can be summarized as follows.

1. Choose a starting vector v(?) of unit magnitude.
2. Let A9 = (v°)T 4v° be the corresponding Rayleigh quotient.
3. Fork=1,2,...

Solve (A — A% D) = v*=D for w, i.e., compute (A4 — /\(k_l))_lv(k_l),
Normalize w to obtain v®) = w/||w]|.

Let A®) = (v T 49® be the corresponding Rayleigh quotient.

It can be shown that the convergence of Rayleigh quotient iteration is ultimately cubic. Cubic
convergence triples the number of significant digits on each iteration.

3.6 The Basic QR Method

The QR method was discovered independently by Francis [6] and Kublanovskaya [11] in 1961.
It is one of the standard methods for finding eigenvalues. The discussion in this section is based
largely on the paper Understanding the QR Algorithm by Watkins [13]. As before, we will assume
that the matrix A is real and symmetric. Therefore, there is an orthonormal basis vy, ..., v, such
that Av; = Ajv; for each j. We will assume that the eigenvalues A; are ordered so that [A;| >
Az = - = Al

The QR algorithm can be summarized as follows:
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1. Choose Ag = 4

2. Form=1,2,...
Am—1 = OmRm OR factorization

3. Stop when A,, is approximately diagonal.

Itis probably not obvious what this algorithm has to do with eigenvalues. We will show that the QR
method is a way of organizing simultaneous iteration, which in turn is a multivector generalization
of the power method.

We can apply the power method to subspaces as well as to single vectors. Suppose S is a k-
dimensional subspace. We can compute the sequence of subspaces S, AS, A2S, ... . Under certain
conditions this sequence will converge to the subspace spanned by the eigenvectors vy, va, ..., Uk
corresponding to the k largest eigenvalues of A. We will not provide a rigorous convergence proof,
but we will attempt to make this result seem plausible. Assume that |Ax| > |Ax+1| and define the
subspaces

T:<'l)1,...,'l)k> U:<'Uk+1,...,'l)n>.

We will first show that all the null vectors of A lie in U. Suppose v is a null vector of A, i.e.,
Av = 0. We can expand v in terms of the basis vy, ..., v, giving

V=10CV1++ CkVk + Ck1Vk+1 + -+ + CnUn.

Thus,
Av = c1A1vy + o + CRARVE + Ch+1Ak+1Vk+1 + -+ + CnAnv, = 0.

Since the vectors {v;} are linearly independent and |A;| > --- > |Ag| > 0, it follows that ¢; =
¢y =+ = ¢ = 0,1.e., v belongs to the subspace U. We will now make the additional assumption
S N U = {0}. This assumption is analogous to the assumption ¢; # 0 in the power method. If x
1S a nonzero vector in S, then we can write

X =cC1v1 + vy + -+ 4 Cr Uk (component in T)
+ Ck41Vk+1 + -+ + CnUy. (component in U')
Thus,
A"x/(A)™ = c1(A/Ae) vy + -+ + ck—1 (Ak—1/Ak) " Vi1 + Ck VK
+ Chr1 At/ M) V41 + - + cnAn /Ak) " v
Since x doesn’t belong to U, at least one of the coefficients ¢y, ..., cxy must be nonzero. Notice

that the first k terms on the right-hand-side do not decrease in absolute value as m — oo whereas
the remaining terms approach zero. Thus, A™x, if properly scaled, approaches the subspace T as
m — oo. In the limit A™ S must approach a subspace of T'. Since S N"U = {0}, A can have no null
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vectors in S. Thus, A is invertible on S. It follows that all of the subspaces A™S have dimension
k and hence the limit can not be a proper subspace of T, i.e., AS — T as m — oo.

Numerically, we can’t iterate on an entire subspace. Therefore, we pick a basis of this subspace
and iterate on this basis. Let ¢, ..., ¢} be a basis of S. Since A is invertible on S, Aq}, ..., Aq}
is a basis of AS. Similarly, A"q},..., A™q} is a basis of A™S for all m. Thus, in principle
we can iterate on a basis of S to obtain bases for AS, A%2S,.... However, for large m these
bases become ill-conditioned since all the vectors tend to point in the direction of the eigenvector
corresponding to the eigenvalue of largest absolute value. To avoid this we orthonormalize the basis
at each step. Thus, given an orthonormal basis ¢7", ..., q;" of A™S, we compute AqY", ..., Aq}
and then orthonormalize these vectors (using something like the Gram-Schmidt process) to obtain
an orthonormal basis ¢!, ... ,q,’:’“ of A™*1S. This process is called simultaneous iteration.
Notice that this process of orthonormalization has the property

< AgV... . Aql >=<qPT gl > fori =1,... k.

Let us consider now what happens when we apply simultaneous iteration to the complete set of
orthonormal vectors e ..., e, where e is the k-th column of the identity matrix. Let us define

S =<e1,...,ex >, Ty =< v1,...,0 >, Uk =< Vkg1,.0.,0p >

fork = 1,2,...,n — 1. We also assume that Sy N Uy = {0} and |Ax| > |Ak+1]| > O for each
1 <k <n—1. It follows from our previous discussion that A" Sy — T} as m — oo. In terms
of bases, the orthonormal vectors g7, ..., q," will converge to and orthonormal basis g1, ..., qn
such that Ty =< ¢q1,...,qx > foreach k = 1,...,n — 1. Each of the subspaces T} is invariant
under A, i.e., ATy C Ty. We will now look at a property of invariant subspaces. Suppose 7 is an
invariant subspace of A. Let Q = (Q1, Q») be an orthogonal matrix such that the columns of Q;
is a basis of 7". Then

T4n_ (Q1AQ1 QTAQ:\ _ (0740, 0
QA0 =\ 51 T = T
0,401 040> 0 0,40
, 1.e., the basis consisting of the columns of Q block diagonalizes A. Let Q be the matrix with

columns ¢y, ..., g,. Since each T} is invariant under A, the matrix QTAQ has the block diagonal

form
0TAQ = A0 where A, is k x k
0 A,

for each k = 1,...,n — 1. Therefore, QT AQ must be diagonal. The diagonal entries are the
eigenvalues of A. If we define 4,, = Q,EAQm where Q,, =< ¢7',...,q) >, then A, will
become approximately diagonal for large m.

We can summarize simultaneous iteration as follows:
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1. We start with the orthogonal matrix Q¢ = I whose columns form a basis
of n-space

2. Fork =1,2,... we compute

Zm = AQm—1  Power iteration step

(3.4a)
Zm = OmRm Orthonormalize columns of Z,, (3.4b)
Am = Q;A Om Test for diagonal matrix. (3.4¢)

The QR algorithm is an efficient way to organize these calculations. Equations (3.4a) and (3.4b)
can be combined to give

AQm—1 = OmRm. (3.5)
Combining equations (3.4c) and (3.5), we get
An-1= 05 1AQm-1 = O 1(QmRu) = (O, Om) R = Om R (3.6)
where Qm = ,E_l Qm. Equation (3.5) can be rewritten as
0 AQm-1 = Ru. (3.7)

Combining equations (3.4c) and (3.7), we get
Am = 0L A0m = (OLA0m-1)OL_,0m = Ru(QL_,0m) = RnOm. (3.8)

Equation (3.6) is a QR factorization of A,_;. Equation (3.8) shows that A4,, has the same Q
and R factors but with their order reversed. Thus, the QR algorithm generates the matrices A,,
recursively without having to compute Z,, and Q,, at each step. Note that the orthogonal matrices
Qm and Q,, satisfy the relation

0102+ 0r = (QF Q0T 02) - (0], 01) = Ok.

We have now seen that the Q R method can be considered as a generalization of the power method.
We will see that the QR algorithm is also related to inverse power iteration. In fact we have the
following duality result.

Theorem 3. If A is an n x n symmetric nonsingular matrix and if S and S+ are orthogonal
complementary subspaces. Then A™S and A~™ S+ are also orthogonal complements.

Proof. If x and y are n-vectors, then
x-y=xTy=xTATAT)ly = (A0)T(AT) 1y = (Ax)TA7ly = Ax - A7y,
Applying this result repeatedly, we obtain

x-y=A"x-A"y.
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It is clear from this relation that every element in A™S is orthogonal to every element in A= S~
Let ¢g1,...,qk be a basis of S and let gx+1,...,¢, be a basis of S+. Then A"qy, ..., A"qx

is a basis of A™S and A™gk+1,...,A7™"qy 1s a basis of AmSL Suppose there exist scalars
c1,...,Cy such that
c1A"qr + -+ ek A" g + k1 AT k41 + -+ AT g, = 0. 3.9

Taking the dot product of this relation with ¢c; A™qy + -+ + cx A™ qx, we obtain
le1A™q1 + -+ ck A" qi|| = 0

and hence ¢ A™q1+---+cx A™qr = 0. Since A™q, ..., A™qx are linearly independent, it follows
that c; = ¢ = -+ = ¢x = 0. In a similar manner we obtain cx+; = --- = ¢, = 0. Therefore,
A"qy, ..., A"qr, A" gk +1, ..., A7™"q, are linearly independent and hence form a basis for n-
space. Thus, A™S and A~ S~ are orthogonal complements. L

It can be seen from this theorem that performing power iteration on subspaces Sy is also performing
inverse power iteration on S kL Since

<qi,....qp >=<A"eq,...,ATer >,
Theorem 3 implies that
<pyir--ly >=<A"ery1,..., A7"e, > .

For k = n — 1 we have < ¢ >=< A™™e, >. Thus, g is the result at the m-th step of
applying the inverse power method to e,. It follows that g, should converge to an eigenvector
corresponding to the smallest eigenvalue A,. Moreover, the element in the n-th row and n-th
column of A,, = QT AQ,, should converge to the smallest eigenvalue A,.

The convergence of the Q R method, like that of the power method, can be quite slow. To make the
method practical, the convergence is accelerated using shifts as in the inverse power method.

3.6.1 The QR Method with Shifts

Suppose we apply a shift w,, at the m-th step, i.e., we replace A by A — u,, I. Then the algorithm
becomes

1. Set 49 = A.
2. fork=1,2,...
Ag—1 — il = Qkﬁk QR factorization

Ak = RO + pel.

3. Deflate when eigenvalue converges
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It follows from the QR factorization of Ax—; — ux I that
OF A1 Ok — il = OF (Ag—1 — k1) Ok = OF Ok R O = Ry k.

Equation (3.10) implies that . .
A = Of Ax—1Qk.
It follows by induction on equation (3.11) that

If we define . .
Ok =01 Ok,
then equation (3.12) can be written
Ax = Qg AQk.

Thus, each Ay has the same eigenvalues as A.
Theorem 4. For each k > 1 we have the relation
(A— D) (A—piI) = Q- QxR - Ry = Ok Ry

where Qj = Ql---Qkande :IQk---Iél.

(3.10)

(3.11)

(3.12)

(3.13)

Proof. For k = 1 the result is just the k = 1 step. Assume that the result holds for some k, i.e.,

(A=l (A= pil) = QxRi.

From the k + 1 step we have A A
Ak — k1] = Or1Ri41.

Combining equations (3.13) and (3.15), we get

Ak — el = QT A0k — i I = OF (A — i1 1) Ok = Q1 Ricy1,

and hence A A A
A— k1] = QkQk+1Rk4+10F = Qk41Re+10% .
Combining equations (3.14) and (3.16), we get

(A= k1 DA =i D) - (A= I) = Qry1 Rer1 OF Qk Rk = Qi1 Ries1,

which is the result for kK + 1. This completes the proof by induction

It follows from Theorem 4 that

(A—pgl)---(A—pu1l)e; = QrRres.
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Since Ry is upper triangular, Qx Ry e; is proportional to the first column of Q. Thus, the first
column of Qy, apart from a constant multiplier, is the result of applying the power method with
shifts to e;. Taking the inverse of the result in Theorem 4, we obtain

A—p )™ (A=)~ =R OF. (3.17)

Since for each j the factor A — w; I is symmetric, its inverse (A — w;1)~! is also symmetric.
Taking the transpose of equation (3.17), we get

(A=) o (A= D)™ = Qu(RE)" (3.18)

Applying equation (3.18) to e,, we get
_ _ _I\T
(A= D)™ (A= D) en = Qu(Ry") en.

Since (R;l)T is lower triangular, (R;l)Ten is a multiple of the last column of Q. Therefore,
the last column of Qp, apart from a constant multiplier, is the result of applying the inverse power
method with shifts to e,. We have yet to say how the shifts are to be chosen. One choice is to
choose i to be the Rayleigh quotient corresponding the last column of Q—_;. This is readily
available to us since, by equation (3.13), it is equal to the (n, n) element of Ax_;. By our remarks
on Rayleigh quotient iteration, we should expect cubic convergence to the eigenvalue A,. This
choice of shifts generally leads to convergence, but there are a few matrices for which the process
fails to converge. For example, consider the matrix

A= (‘1) (1))

The unshifted QR algorithm doesn’t converge since

A A 0 1\/1 O
A:QlRlz(l o)(o 1)
AoA I 0\/0 1

Thus, all the iterates are equal to A. The Rayleigh quotient shift doesn’t help since 4, = 0.
A shift that does work all the time is the Wilkinson Shift. This shift is obtained by considering
the lower-rightmost 2 x 2 submatrix of Ax—; and choosing px to be the eigenvalue of this 2 x 2
submatrix that is closest to the (n,n) element of Ax—;. When there is sufficient convergence to
the eigenvalue A, the off-diagonal elements in the last row and column of the Ax matrices will be
very small. We can deflate these matrices by removing the first and last columns, and then A,,_;
can be obtained using the deflated matrices. Continuing in this manner we can obtain all of the
eigenvalues.

Until recently, the QR method with shifts (or one of its variants) was the primary method for
computing eigenvalues and eigenvectors. Recently a competitor has emerged called the Divide-
and-Conquer algorithm.

54



3.7 The Divide-and-Conquer Method

The Divide-and-Conquer algorithm was first introduced by Cuppen [3] in 1981. As first introduced,
the algorithm suffered from certain accuracy and stability problems. These were not overcome
until a stable algorithm was introduced in 1993 by Gu and Eisenstat [8]. The divide-and-conquer
algorithm is faster than the shifted QR algorithm if the size is greater than about 25 and both
eigenvalues and eigenvectors are required. Let us begin by discussing the basic theory underlying
the method. Let 7" denote a symmetric tridiagonal matrix for which we desire the eigenvalues and
eigenvectors, i.e., T has the form

al bl
by

Am—1 bm—l
bm—l Am bm

3.19
bm | am+1 bmi1 ( )

bm+1
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The matrix 7' can be split into the sum of two matrices as follows:

al bl
by

T =
am%J,_'bm bm+d
bm+1
B bn—l
bn—l an
n bm | b
bm | b
(0
0
. T: | O . 1 _ T, |0 .
_(O T2)+bm 1 (0,...,0,1,1,0,...,0)—(0 T2)+bmvv (3.20)
0
\ 0/

where m is roughly one half of n, 7} and 75 are tridiagonal, and v is the vector v = e, + € +1-
Suppose we have the following eigen decompositions of 77 and 7>

Ti=01A00] Ta=0:A07 (3.21)

where A; and A, are diagonal matrices of eigenvalues. Then 7" can be written

(T 0 r
T—(O T2)+bmvv

_{ 014,07 0 T
—( 0 Q2A2Qg +meU

(01 O Ay 0 or o
_( 01 Q2)|:( Ol Az)—l—bmuuT]( 01 QzT) (3.22)

where



Therefore, T is similar to a matrix of the form D + puu” where D = diag(d;,...,d,). Thus,
it suffices to look at the eigen problem for matrices of the form D + puu?”. Let us assume first
that A is an eigenvalue of D + puu?, but is not an eigenvalue of D. Let x be an eigenvector of
D + puu” corresponding to A. Then

(D + puul)x = Dx + p(u x)u = Ax.

and hence
x =—pulx)(D— Al tu. (3.23)
Multiplying equation (3.23) by u” and collecting terms, we get
@ x) (1 + puT (D =A™ u) = T x) (1 + p; 7 f/\) = 0. (3.24)

Since A is not an eigenvalue of D, we must have ul x # 0. Thus,

2

" u
A) =1 k
f +p};dk—/\

= 0. (3.25)

Equation (3.25) is called the secular equation and f (1) is called the secular function. The eigen-
values of D + puu? that are not eigenvalues of D are roots of the secular equation. It follows
from equation (3.23) that the eigenvector corresponding to the eigenvalue A is proportional to
(D — AI)"'u. Figure 3.1 shows a plot of an example secular function.

The slope of f(A) is given by
W=p) —F—.

Thus, the slope (when it exists) is positive if p > 0 and negative if p < 0. Suppose the d; are such
that dy > d, > --- > d, and that all the components of u are nonzero. Then there must be a root
between each pair (d;, d;+1). This gives n — 1 roots. Since f(1) - 1l asA — oo oras A — —o0,
there is another root greater than d; if p > 0 and a root less than d, if p < 0. This gives n roots.
The only way the secular equation will have less than n roots is if one or more of the components
of u are zero or if one or more of the d; are equal. Suppose A is a root of the secular equation. We
will show that x = (D — AI)~'u is an eigenvector of D + puu” corresponding to the eigenvalue
A. Since A is a root of the secular equation, we have

fD)=1+puf (D -2 u=14+pulx=0
or pulx = —1. Since x = (D — A1)~ u, we have
(D—Al)x=Dx—Ax=u or Dx —u = Ax.

It follows that
(D + puuT)x = Dx 4+ p(uT x)u = Dx —u = Ax

as was to be proved.
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Figure 3.1: Graph of f(A) = 1 + 2 + 52 + 325 + 2

Let us now look at the special cases where there are less than n roots of the secular equation. If
u; = 0, then

(D + puul)e; = De; + p(uTe;)u = De; + puju = De; = de;,
i.e., e; is an eigenvector of D + puu’ corresponding to the eigenvalue d;.

If d; = dj fori # j and either u; or u; is nonzero, then the vector x = ae; + Be; is an eigenvector
of D corresponding to the eigenvalue d; for any o and § that are not both zero. We can choose «
and B so that

ulx = au; + Bu; = 0.

For example, « = u; and B = —u; would work. With this choice of « and B, the vector x =
ae; + Be; is an eigenvector of D + puu? corresponding to the eigenvalue d;. In this way we can
obtain n eigenvalues and vectors even when the secular equation has less that n roots.

Finding Roots of the Secular Equation The first thought would be to use Newton’s method
to find the roots of f(A). However, when one or more of the u; are small but not small enough
to neglect, the function f(A) behaves pretty much like it would if the terms corresponding to the
small u; were not present until A is very close to one of the corresponding d; where it abruptly
approaches +o00. Thus, almost any initial guess will lead away from the desired root. This is
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illustrated in Figure 3.2 where the .5 factor multiplying 1/(2 — 1) in the previous example is
replaced by 0.01. Notice that the curve is almost vertical at the zero crossing near 2. To solve this
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Figure 3.2: Graphof f(1) = 1 + =2 + 22 + 25 + =5

problem, a modified form of Newton’s method is used. Newton’s method approximates the curve
near the guess by the tangent line at the guess and then finds the place where this line crosses zero.
Alternatively, we could approximate f(A) near the guess by another curve that is tangent to f (1)
at the guess as long as we can find the nearby zero crossing of this curve. If we are looking for a
root between d; and d; 41, we could use a function of the form

Co C3

A) = 3.26
g(A) CI_I—di—/I_I_diH—/I (3.26)

to approximate f(A). Once c1, ¢, and c3 are chosen, the roots of g(A) can be found by solving the

quadratic equation

c1(di —A)(dit1 —A) + c2(dig1 —A) + ¢c3(di — A) = 0. (3.27)
Let us write f(A) as follows
SA) =14 py1(d) + py2(R) (3.28)
where
Lo ‘ u?
vi(L) = ; 7 f/\ and Y1) = k;ﬂ 7 f/\. (3.29)
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Notice that v; has only positive terms and ¥/, has only negative terms for d;+; < A < d;. If A; is
our initial guess, then we approximate ¥, near A; by the function g; given by

0%)
di — A

g1(A) =1 + (3.30)

where «; and a5, are chosen so that

g1(A;) =v1(A;) and gi(4;) = ¥i(4)). (3.31)

It is easily shown that oy = ¥1 (A;) — (di — A;)¥1(X;) and o = (d; — A;)*¥|(X;). Similarly, we
approximate ¥, near A; by the function g, given by

04
A) = _— 3.32
g2(A) = a3z + dior— A (3.32)
where a3 and a4 are chosen so that
g2(A;) =¥ (Aj) and g5(X;) = ¥5(4;). (3.33)

Again it is easily shown that @z = ¥1(4;) — (di+1 — A;)¥5(A;) and ag = (di+1 — A))*¥5(A;).
Putting these approximations together, we have the following approximation for f near A;

o o
FO) =14 pgi(A) + pg2() = (1 + pay + pas) + L2 P
di—A  diy1—1

Co C3
d—2 T d A

c1 + (3.34)

This modified Newton’s method generally converges very fast.

Recursive Procedure We have shown how the eigenvalues and eigenvectors of 7' can be ob-
tained from the eigenvalues and eigenvectors of the smaller matrices 77 and 7>. The procedure we
have applied to T can also be applied to 71 and 7. Continuing in this manner we can reduce the
original eigen problem to the solution of a series of 1-dimensional eigen problems and the solution
of a series of secular equations. In practice the recursive procedure is not carried all the way down
to 1-dimensional problems, but stops at some size where the QR method can be applied effec-
tively. We saw previously that the eigenvector corresponding to the eigenvalue A is proportional
to (D — A1)~ 'u as in equation (3.23). There are a number of subtle issues involved in computing
the eigenvectors this way when there are closely spaced pairs of eigenvalues. The interested reader
should consult the book by Demmel [4] for a discussion of these issues.
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Chapter 4

Iterative Methods

Direct methods for solving systems of equations Ax = b or computing eigenvalues/eigenvectors of
a matrix A become very expensive when the size n of A becomes large. These methods generally
involve order n> operations and order n? storage. For large problems iterative methods are often
used. Each step of an iterative method generally involves the multiplication of the matrix 4 by a
vector v to obtain Av. Since the matrix A is not modified in this process it is often possible to
take advantage of special structure of the matrix in forming Av. The special structure most often
exploited is sparseness (many elements of A zero). Taking advantage of the structure of A can
often drastically reduce the cost of each iteration. The cost of iterative methods also depends on
the rate of convergence. Convergence is usually better when the matrix A is well conditioned.
Therefore, preconditioning of the matrix is often employed prior to the start of iteration. There are
many iterative methods. In this section we will discuss only two: the Lanczos method for eigen
problems and the conjugate gradient method for equation solution.

4.1 The Lanczos Method

As before, we will restrict our attention here to real symmetric matrices. We saw previously that
the power method is an iterative method whose m-th iterate x is given by x™ = Ax("=D,
Lanczos had the idea that better convergence could be obtained if we made use of all the iterates
x© Ax©@ 42xO© A x© at the m-th step instead of just the final iterate x. The subspace
generated by x(@, Ax©@ . 4"~1x© ig called the m-th Krylov subspace and is denoted by K,,,.
Lanczos showed that you could generate an orthonormal basis ¢, . .., g, of the Krylov subspace
Km recursively. He then showed that the eigen problem restricted to this subspace is equivalent
to finding the eigenvalues/eigenvectors of the tridiagonal matrix 7,, = QL AQ,, where Q,, is
the matrix whose columns are ¢1,...,¢g,. As m becomes larger some of the eigenvalues of 7},
converge to eigenvalues of A.
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Let g; be defined by

g1 =xO /x| 4.1)
and let g, be given by
q2 =r/|lr1ll where ry = Ag1 — (Aq1-q1)q1- (4.2)
It is easily verified that r; - g1 = g2 - q1 = 0. We generate the remaining vectors g recursively.
Suppose ¢, ..., g, have been generated. We form
rp = Aqp — (Aqp - 4p)qp — (Aqp - 4p—1)4p—1 (4.3)
dp+1 = 1p/lIp. 4.4)

Clearly, rp, - g, = 1, - qp—1 = 0 by construction. For s < p — 2 we have

p-qs = Aqp - qs = qp * Ags. 4.5)
But, it follows from equations (4.3)—(4.4) that

Aqs = rs + (Aqs - 45)qs + (Aqs - s—1)qs—1
= |Irsllgs+1 + (Aqs - g5)qs + (Aqs - s—1)qs—1. (4.6)

Thus, 7, - g5 = qp - Aqs = 0 since Ag; is a linear combination of vectors gx with k < p. It follows
that g, is orthogonal to all of the preceding gx vectors. We will now show that g1,...,¢, 1s a
basis for the space K,,. It follows from equations (4.3) and (4.4) that

<x©@ >=c q1 > and < x(o),Ax(O) >=<4dq1,492 > .

Suppose for some k we have

<x©@ Ax©@ A0 s=—c gy gn gk >
Then, A¥x© can be written as a linear combination of Aq, ..., Aqk. It follows from equations
(4.3) and (4.4) that Ag; can be written as a linear combination of ¢;_1, gi, qi+1. Therefore, Ak x©
can be written as a linear combination of ¢y, ..., gx+1 and hence

<x©@ Ax© AR O s=c g o, g >
It follows by induction that g1, ... , g, is a basis for K, =< x@, Ax©@ . A" 1x© >

Define o), = Aqp - qp and B, = Aqp - ¢p—1. Then

Br = Adp - qp—1 = qp - Aqp—1
=dqp- [“”p—l lgp + (Adp—1 - gp—1)qp—1 + (Aqp—1 - Gp—2)qp—2
= llrp-1ll 7

It follows from equations (4.3), (4.4), and (4.7) that
Aqp = Bp+14p+1 + %pqp + Bpdp—1- (4.8)
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In view of equation (4.8), the matrix T, = QL AQ,, has the tridiagonal form

03] ,32

,32 0%) ,33

Tw=0rA40, = .. - (4.9)
,Bm—l (0477 | ,Bm
Bm  om

The original eigenvalue problem can be given a variational interpretation. Let a function ¢ be

defined by
Ax - x
¢(x) = : (4.10)
XX
We will show that ¢(x) is an eigenvalue of A if and only if x is a stationary point of ¢, i.e.,
dnp(x) = 0 for all h. Since

_ (x-x)(2Ax - h) — (Ax - x)(2x - h)

d
51 (x) = g (x +Ah)|

(x - x)?
2 Ax -
:—[Ax— al xx]-h, (4.11)
XX XX
we have
Ax -
onp(x) =0 forallh < [Ax— xx xxx]-hzO for all 1 (4.12a)
A
o Ax =T g (4.12b)
XX

Suppose in this variational principle we restrict both x and / to the subspace K,,. Then x and h
can be expressed in the form x = Q,,y and h = Q,,w for some y, w € R™. With these relations
equation (4.12a) becomes

[(AQm)y — (AQQmm;?)'QS;yx] - Opmw =0 forall w
or
T .
[(Q;AQm)y . (Qm’ig’;)y yy] ‘w=0 forall w. (4.13)

Thus the variational principle restricted to K, leads to the reduced eigenvalue problem

Tmy = (0} A0m)y = py. (4.14)

It has been found that the extreme eigenvalues usually converge the fastest with this method. The
biggest numerical problem with this method is that round-off errors cause the vectors {gx} gener-
ated in this way tend to loose their orthogonality as the number of steps increases. It has been found
that this loss of orthogonality increases rapidly whenever one of the eigenvalues of 7, approaches
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an eigenvalue of A . There are a number of methods that counteract this loss of orthogonality by
periodically reorthogonalizing the vectors {gx } based on the convergence of the eigenvalues.

We can give another way of looking at the Lanczos algorithm. Let K, denote the matrix whose
columns are x@, Ax©@ . A" 1x©)  We will show that K,, has a reduced QR factorization
K, = Om R, where Q,, is the matrix occurring in the Lanczos method with columns ¢y, ..., ¢n.
We have shown previously that

<x@ > =<qg, >

<x9 4x©@ > =< g;,9, >

<x©@ Ax©O AT O s =gy gn, . g >
We can express this result in matrix form as
K= x@, 4x©O . A" X9 = (¢1,....gm)Rm = OmRm (4.15)

where R, is an upper triangular matrix. This is the reduced QR factorization that we set out to
establish. Of course we don’t want to determine Q,, and R, directly since the matrix K,, becomes
poorly conditioned for large m.

4.2 The Conjugate Gradient Method

The conjugate gradient (CG) method is a widely used iterative method for solving a system of
equations Ax = b when A is symmetric and positive definite. It was first introduced in 1952
by Hestenes and Stiefel [9]. Although this was not the original motivation, the CG method can be
considered as a Krylov subspace method related to the Lanczos method. We assume that g1, g2, . . .
are orthonormal vectors generated using the Lanczos recursion starting with the initial vector b. As
before we let Qx = (q1,...,qx) and Ty = Q,{AQk. Since A is positive definite, we can define
an A-norm by

Ix]|3 = xT Ax. (4.16)

We will show that each iterate x,, in the CG method is the unique element of the Krylov subspace
K that minimizes the error | x — X, ||4 where x is the solution of Ax = b.

Let r, denote the residual ry = b — Axy. Since g, = b/||b||, it follows that
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OFre = QL (b— Ax) = QF'b — QF Axy

‘H
= : |p-TkQfxx
9%
= |lbller — Te QT x
= T OF (Ib]| Qk T o1 — xk). (4.17)
If x; is chosen to be
Xk = |6l QxTy "en, (4.18)
then Q,{rk = 0, i.e., r¢ is orthogonal to each of the vectors ¢, ..., gx and hence to every vector
in K. It follows from equation (4.18) that x is a linear combination of ¢4, ..., gx and hence is a

member of K. If X is an arbitrary element of K, then
X=xr+$6 for some § in K.
Since r is orthogonal to every vector in K, we have

Ix = %[13 = (x = )T A(x - %)
= (x —x; —8)T A(x — x — §)
= [lx — xellZ + 18115 — 267 ACx — xi)
= lx —xicllF + 11815 — 28" e
= |lx — xiellZ + [I811%- (4.19)
Thus | x — X ||3 is minimized for § = 0, i.e., when X = xz. We will now develop a simple recursive

method to generate the iterates x.

The matrix Ty = Q,{A QO 1s also positive definite and hence has a Cholesky factorization
Ty = Ly Dy LT (4.20)

where L is unit lower triangular and Dy is diagonal with positive diagonals. Combining equations
(4.18) and (4.20), we get

Xk = 16| Qr(Ly " D' LY e

= Peyk (4.21)
where P, = QkL;T and yx = ||b| D' L 'e;. We denote the columns of Py by pi...., pr and
the components of yx by 711, ..., ng. We will show that the columns of Pi_; are py...., px—1 arld
the components of yx_; are 1y, ..., Nk—1. It follows from equation (4.20) and the definition of Pk
that

PIrAP, = L' QT AQx LT = L' T LT
= L' (Lk Dk L]) LT = Dy.
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Thus

prAp; =0 foralli # j. (4.22)
It is easy to see from equation (4.9) that Tj_, is the leading (k — 1) x (k — 1) submatrix of T}.
Equation (4.20) can be written

1 d, 1
L . L
Y dic—1 T
lg—1 1 dk lg—1 1

_ Lkg-1 O\(Dk-1 O Li 0\
o lk_lekT_l 1 0 di lk_lekT_l 1
_ Lk_le_lL]’I;_l *

o * *

where x denotes terms that are not significant to the argument. Thus, Lix_; and Dg_; are the
leading (k — 1) x (k — 1) submatrices of Li and Dy respectively. Since Ly has the form

_(Liy 0O
Lk_( * 1)7
11— L', 0
ko — * 1)

Therefore, it follows from the definition of yy that

Ty =

the inverse L;l must have the form

i = IbIID; L e

=1%o ) (0 D)e
= o ( Db 2 Y
)

D, L 1 0 .
= ||b||( 1/dy ( ) ey is here a (k — 1)-vector

— “b“Dk_l k_1el — Yik—1
Nk e )’

i.e., yx—1 consists of the first k — 1 components of y. It follows from the definition of 13k that

Pk = QkL]:T
T *
- (Qk vaIk)( 1)

= (Qr1 L%, pr) = (Pr—1. Pr).
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1.e., ISk_l consists of the first kK — 1 columns of ISk.

We now develop a recursion relation for xi. It follows from equation (4.21) that
Xk = Pryx

= (Pr_1. ﬁk)(y"‘l)
Nk
= Pr_1 Vi1 + Nk Pk

= Xk—1 + Nk Pk (4.23)

We now develop a recursion relation for pg. It follows from the definition of 13k that
PL] = O

or
1 L

(1. s Pr) c = (q1,- - k). (4.24)
ok
1

Equating the k-th columns in equation (4.24), we get

lk—1Prk—1 + Px = qk

or
Pk = qk — lk—1 Pr—1. (4.25)

Next we develop a recursion relation for the residuals rx. Multiplying equation (4.23) by A and
subtracting from b, we obtain

ke = rk—1 — Nk APk. (4.26)
Since xx—1 belongs to Kj_1, it follows that Axx_; belongs to K. Since b also belongs to Kk, it
is clear that rp—y = b — Axy—; is a member of K. Since r¢—; and gx both belong to K} and both
are orthogonal to Kx_, they must be parallel. Thus,

Tk—1

qr = . (4.27)
I7%e—1ll
We now define pi by
Pk = |[re—1ll Pk (4.28)
Substituting equations (4.27) and (4.28) into equations (4.23), (4.26), and (4.25), we get
Xk = Xg—1 + n—kpk = Xk—1 + Vk Pk (4.29a)
71l
k
e = rk—1 — n—pk =Trk—1 — VkApk (4.29b)
71l
lk_ r'k—
Pk = lre—1llgx — —1“ 1”pk—l = Fk—1 + Uk Pk—1- (4.29¢)

I
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Here we have used the definitions -

k:
i1

and
le—1llre—1l

i = —
1721l

Equations (4.29a), (4.29b), and (4.29c) are our three basic recursion relations. We next develop
a formula for vg. Since rx—1 = ||rk—1]|/gx and ry is orthogonal to K, multiplication of equation
(4.29b) by rl” | gives
0=riyrk = lIre—1lI> = ver{_, Apx.
Thus 5
¢ = Al (4.30)
Te_1 APk

Multiplying equation (4.29¢) by pI A, we get
kaApk = kaArk_l +0= rkT_lApk. (4.31)
Combining equations (4.30) and (4.31), we obtain the desired formula

_ el

PiApK

(4.32)

We next develop a formula for py. In view of equations (4.22) and (4.28), multiplication of equa-
tion (4.29¢) by ka_lA, gives

0= pi_|Apk = pj_ 1 Ark—1 + JDi— 1 APi

or

T
Pr_ Ark_
e = — KA (4.33)
Pe—1APk—1
Multiplying equation (4.29b) by rkT , we get
rkTrk =0- vkrkTApk
or . R
r, T
v = k= ”f"” . (4.34)
re Apk re Apk
Combining equations (4.32) and (4.34), we get
2 2
Il _ Mreeal 3

B rkTApk N kaApk .

Evaluating equation (4.35) for k = k — 1 and combining the result with equation (4.33), we obtain
the desired formula .
P Are—1 rk— [§

Pe o Ape—r lre—=2l?

iy = (4.36)
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We can now summarize the CG algorithm

1. Compute the initial values xo = 0,79 = b, and p; = b.

2. Fork =1,2,... compute

z = Apxk Save Apy
Vi = ||rk—1 ||2/ka2 New step length
Xk = Xk—1 + Vk Dk Update approximation
Tk = I'k—1 — ViZ New residual
k1 = 17?11 |1? Improvement of residual
Pk+1 = Tk + Mk+1DPk New search direction

3. Stop when ||r¢|| is small enough.

Notice that the algorithm at each step only involves one matrix vector product, two dot products
(by saving ||rx||? at each step), and three linear combinations of vectors. The storage required is
only four vectors (current values of z, r, x, and p) in addition to the matrix A. As with all iterative
methods, the convergence is fastest when the matrix is well conditioned. The convergence also
depends on the distribution of eigenvalues.

4.3 Preconditioning

The convergence of iterative methods often depends on the condition of the underlying matrix as
well as the distribution of its eigenvalues. The convergence can often be improved by applying
a preconditioner M 1 to A, i.e., we consider the matrix M ~'A4 in place of A. If we are solving
a system of equations Ax = b, this system can be replaced by M ~'Ax = M~'h. The matrix
M~!A might be better suited for an iterative method. Of course M must be fairly simple to
compute, or the advantage might be lost. We often try to choose M so that it approximates A4 in
some sense. If the original A was symmetric and positive definite, we generally choose M to be
symmetric and positive definite. However, M ~! A is generally not symmetric and positive definite
even when both A and M are. If M is symmetric and positive definite, then M = EET for
some E (possible obtained by a Cholesky factorization). The system of equations Ax = b can be
replaced by (ET'AE~T)% = E~'b where = ET x. The matrix E-'AE~T is symmetric and
positive definite. Since

ET(ETTAETT)ET = M7 4, Similarity Transformation
E~'AE~T has the same eigenvalues as M ! A.

The choice of a good preconditioner is more of an art than a science. The following are some of
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the ways M might be chosen:

1. M can be chosen to be the diagonal of A, i.e., M = diag(ai1,a22,...,ann).

2. M can be chosen on the basis of an incomplete Cholesky or LU factorization of A. If 4
is sparse, then the Cholesky factorization A = LL7 will generally produce an L that is
not sparse. Incomplete Cholesky factorization uses Cholesky-like formulas, but only fills in
those positions that are nonzero in the original 4. If L is the factor obtained in this manner,
wetake M = LLT.

3. If a system of equations is obtained by a discretization of a differential or integral equation,
it is sometimes possible to use a coarser discretization and interpolation to approximate the
system obtained using a fine discretization.

4. If the underlying physical problem involves both short-range and long-range interactions, a
preconditioner can sometimes be obtained by neglecting the long-range-interactions.

5. If the underlying physical problem can be broken up into nonoverlapping domains, then a
preconditioner might be obtained by neglecting interactions between domains. In this way
M becomes a block diagonal matrix.

6. Sometimes the inverse operator A~ can be expressed as a matrix power series. An approx-
imate inverse can be obtained by truncating this series. For example, we might approximate
A~! by a few terms of the Neumann series A~ = I + (I — A) + (I — A)? +---.

There are many more preconditioners designed for particular types of problems. The user should
survey the literature to find a preconditioner appropriate to the problem at hand.
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