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Preface

The purpose of these notes is to present some of the standard procedures of numerical linear al-

gebra from the perspective of a user and not a computer specialist. You will not find extensive

error analysis or programming details. The purpose is to give the user a general idea of what the

numerical procedures are doing. You can find more extensive discussions in the references

� Applied Numerical Linear Algebra by J. Demmel, SIAM 1997

� Numerical Linear Algebra by L. Trefethen and D. Bau, Siam 1997

� Matrix Computations by G. Golub and C. Van Loan, Johns Hopkins University Press 1996

The notes are divided into four chapters. The first chapter presents some of the notation used in

this paper and reviews some of the basic results of Linear Algebra. The second chapter discusses

methods for solving linear systems of equations, the third chapter discusses eigenvalue problems,

and the fourth discusses iterative methods. Of course we cannot discuss every possible method,

so I have tried to pick out those that I believe are the most used. I have assumed that the user has

some basic knowledge of linear algebra.
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Chapter 1

Mathematical Preliminaries

In this chapter we will describe some of the notation that will be used in these notes and review

some of the basic results from Linear Algebra.

1.1 Matrices and Vectors

A matrix is a two-dimensional array of real or complex numbers arranged in rows and columns. If

a matrix A hasm rows and n columns, we say that it is an m� n matrix. We denote the element in

the i-th row and j -th column of A by aij . The matrix A is often written in the form

A D

�
a11 � � � a1n

:::
:::

am1 � � � amn

�
:

We sometimes write A D .a1; : : : ; an/ where a1; : : : ; an are the columns of A. A vector (or

n-vector) is an n � 1 matrix. The collection of all n-vectors is denoted by R
n if the elements

(components) are all real and by C
n if the elements are complex. We define the sum of two

m � n matrices componentwise, i.e., the i ,j entry of AC B is aij C bij . Similarly, we define the

multiplication of a scalar ˛ times a matrix A to be the matrix whose i ,j component is ˛aij .

If A is a real matrix with components aij , then the transpose of A (denoted by AT ) is the matrix

whose i ,j component is aj i , i.e. rows and columns are interchanged. IfA is a matrix with complex

components, then AH is the matrix whose i ,j -th component is the complex conjugate of the j ,i-th

component of A. We denote the complex conjugate of a by a. Thus, .AH/ij D aj i . A real matrix

A is said to be symmetric if A D AT . A complex matrix is said to be Hermitian if A D AH .

Notice that the diagonal elements of a Hermitian matrix must be real. The n � n matrix whose

diagonal components are all one and whose off-diagonal components are all zero is called the

identity matrix and is denoted by I .
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If A is an m � k matrix and B is an k � n matrix, then the product AB is the m � n matrix with

components given by

.AB/ij D
k
X

rD1

airbrj :

The matrix product AB is only defined when the number of columns of A is the same as the

number of rows of B . In particular, the product of anm�n matrix A and an n-vector x is given by

.Ax/i D
n
X

kD1

aikxk i D 1; : : : ;m:

It can be easily verified that IA D A if the number of columns in I equals the number of rows

in A. It can also be shown that .AB/T D BTAT and .AB/H D BHAH . In addition, we have

.AT /T D A and .AH /H D A.

1.2 Vector Spaces

R
n and C

n together with the operations of addition and scalar multiplication are examples of a

structure called a vector space. A vector space V is a collection of vectors for which addition and

scalar multiplication are defined in such a way that the following conditions hold:

1. If x and y belong to V and ˛ is a scalar, then x C y and ˛x belong to V .

2. x C y D y C x for any two vectors x and y in V .

3. x C .y C z/ D .x C y/C z for any three vectors x, y, and z in V .

4. There is a vector 0 in V such that x C 0 D x for all x in V .

5. For each x in V there is a vector �x in V such that x C .�x/ D 0.

6. .˛ˇ/x D ˛.ˇx/ for any scalars ˛, ˇ and any vector x in V .

7. 1x D x for any x in V .

8. ˛.x C y/ D ˛x C ˛y for any x and y in V and any scalar ˛.

9. .˛ C ˇ/x D ˛x C ˇx for any x in V and any scalars ˛, ˇ.

A subspace of a vector space V is a subset that is also a vector space in its own right.
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1.2.1 Linear Independence and Bases

A set of vectors v1; : : : ; vr is said to be linearly independent if the only way we can have ˛1v1 C
� � � C ˛rvr D 0 is for ˛1 D � � � D ˛r D 0. A set of vectors v1; : : : ; vn is said to span a vector

space V if every vector x in V can be written as a linear combination of the vectors v1; : : : ; vn, i.e.,

x D ˛1x1 C � � � C ˛nxn. The set of all linear combinations of the vectors v1; : : : ; vr is a subspace

denoted by < v1; : : : ; vr > and called the span of these vectors. If a set of vectors v1; : : : ; vn is

linearly independent and spans V it is called a basis for V . If a vector space V has a basis consisting

of a finite number of vectors, then the space is said to be finite dimensional. In a finite-dimensional

vector space every basis has the same number of vectors. This number is called the dimension of

the vector space. Clearly R
n and C

n have dimension n. Let ek denote the vector in R
n or C

n that

consists of all zeroes except for a one in the k-th position. It is easily verified that e1; : : : ; en is a

basis for either R
n or C

n.

1.2.2 Inner Product and Orthogonality

If x and y are two n-vectors, then the inner (dot) product x � y is the scaler value defined by xHy.

If the vector space is real we can replace xH by xT . The inner product x � y has the properties:

1. y � x D x � y

2. x � .˛y/ D ˛.x � y/

3. x � .y C z/ D x � y C x � z

4. x � x � 0 and x � x D 0 if and only if x D 0.

Vectors x and y are said to be orthogonal if x �y D 0. A basis v1; : : : ; vn is said to be orthonormal

if

vi � vj D
(

0 i ¤ j

1 i D j
:

We define the norm kxk of a vector x by kxk D
p
x � x D

q

jx1j2 C � � � C jxnj2. The norm has

the properties

1. k˛xk D j˛jkxk

2. kxk D 0 implies that x D 0

3. kx C yk � kxk C kyk.

If v1; : : : ; vn is an orthonormal basis and x D ˛1v1 C � � � C ˛nvn, then it can be shown that

kxk2 D j˛1j2 C � � � C j˛nj2. The norm and inner product satisfy the inequality

jx � yj � kxk kyk: Cauchy Inequality
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1.2.3 Matrices As Linear Transformations

An m � n matrix A can be considered as a mapping of the space R
n (Cn) into the space R

m (Cm)

where the image of the n-vector x is the matrix-vector product Ax. This mapping is linear, i.e.,

A.x C y/ D Ax C Ay and A.˛x/ D ˛Ax. The range of A (denoted by Range.A/) is the space

of all m-vectors y such that y D Ax for some n-vector x. It can be shown that the range of A is

the space spanned by the columns of A. The null space of A (denoted by Null.A/) is the vector

space consisting of all n-vectors x such that Ax D 0. An n � n square matrix A is said to be

invertible if it is a one-to-one mapping of the space R
n (Cn) onto itself. It can be shown that a

square matrix A is invertible if and only if the null space Null.A/ consists of only the zero vector.

IfA is invertible, then the inverse A�1 of A is defined byA�1y D x where x is the unique n-vector

satisfying Ax D y. The inverse has the properties A�1A D AA�1 D I and .AB/�1 D B�1A�1.

We denote .A�1/T and .AT /�1 by A�T .

If A is an m � n matrix, x is an n-vector, and y is an m-vector; then it can be shown that

.Ax/ � y D x � .AHy/:

1.3 Derivatives of Vector Functions

The central idea behind differentiation is the local approximation of a function by a linear func-

tion. If f is a function of one variable, then the locus of points
�

x; f .x/
�

is a plane curve C . The

tangent line to C at
�

x; f .x/
�

is the graphical representation of the best local linear approximation

to f at x. We call this local linear approximation the differential. We represent this local linear

approximation by the equation dy D f 0.x/dx. If f is a function of two variables, then the locus

of points
�

x; y; f .x; y/
�

represents a surface S . Here the best local linear approximation to f at

.x; y/ is graphically represented by the tangent plane to the surface S at the point
�

x; y; f .x; y/
�

.

We will generalize this idea of a local linear approximation to vector-valued functions of n vari-

ables. Let f be a function mapping n-vectors into m-vectors. We define the derivative Df .x/ of

f at the n-vector x to be the unique linear transformation (m � n matrix) satisfying

f .x C h/ D f .x/CDf .x/hC o.khk/ (1.1)

whenever such a transformation exists. Here the o notation signifies a function with the property

lim
khk!0

o.khk/
khk D 0:

Thus, Df .x/ is a linear transformation that locally approximates f .

We can also define a directional derivative ıhf .x/ in the direction h by

ıhf .x/ D lim
�!0

f .x C �h/� f .x/
�

D d

d�
f .x C �h/

ˇ

ˇ

ˇ

�D0
(1.2)
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whenever the limit exists. This directional derivative is also referred to as the variation of f in the

direction h. If Df .x/ exists, then

ıhf .x/ D Df .x/h:

However, the existence of ıhf .x/ for every direction h does not imply the existence of Df .x/. If

we take h D ei , then ıhf .x/ is just the partial derivative
@f.x/

@xi
.

1.3.1 Newton’s Method

Newton’s method is an iterative scheme for finding the zeroes of a smooth function f . If x is a

guess, then we approximate f near x by

f .x C h/ D f .x/CDf .x/h:

If x C h is the zero of this linear approximation, then

h D �
�

Df .x/
��1
f .x/

or

x C h D x �
�

Df .x/
��1
f .x/: (1.3)

We can take x C h as an improved approximation to the nearby zero of f . If we keep iterating

with equation (1.3), then the .k C 1/-iterate x.kC1/ is related to the k-iterate x.k/ by

x.kC1/ D x.k/ �
�

Df .x.k//
��1
f .x.k//: (1.4)
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Chapter 2

Solution of Systems of Linear Equations

2.1 Gaussian Elimination

Gaussian elimination is the standard way of solving a system of linear equations Ax D b when

A is a square matrix with no special properties. The first known use of this method was in the

Chinese text Nine Chapters on the Mathematical Art written between 200 BC and 100 BC. Here

it was used to solve a system of three equations in three unknowns. The coefficients (including

the right-hand-side) were written in tabular form and operations were performed on this table to

produce a triangular form that could be easily solved. It is remarkable that this was done long

before the development of matrix notation or even a notation for variables. The method was used

by Gauss in the early 1800s to solve a least squares problem for determining the orbit of the asteroid

Pallas. Using observations of Pallas taken between 1803 and 1809, he obtained a system of six

equations in six unknowns which he solved by the method now known as Gaussian elimination.

The concept of treating a matrix as an object and the development of an algebra for matrices were

first introduced by Cayley [2] in the paper A Memoir on the Theory of Matrices.

In this paper we will first describe the basic method and show that it is equivalent to factoring the

matrix into the product of a lower triangular and an upper triangular matrix, i.e., A D LU . We

will then introduce the method of row pivoting that is necessary in order to keep the method stable.

We will show that row pivoting is equivalent to a factorization PA D LU or A D PLU where P

is the identity matrix with its rows permuted. Having obtained this factorization, the solution for a

given right-hand-side b is obtained by solving the two triangular systems Ly D Pb and Ux D y

by simple processes called forward and backward substitution.

There are a number of good computer implementations of Gaussian elimination with row pivoting.

Matlab has a good implementation obtained by the call [L,U,P]=lu(A). Another good implemen-

tation is the LAPACK routine SGESV (DGESV,CGESV). It can be obtained in either Fortran or C

from the site www.netlib.org.

We will end by showing how the accuracy of a solution can be improved by a process called

11



iterative refinement.

2.1.1 The Basic Procedure

Gaussian elimination begins by producing zeroes below the diagonal in the first column, i.e.,˙
� � : : : �
� � : : : �
:::

:::
:::

� � : : : �

�
�!

˙
� � : : : �
0 � : : : �
:::

:::
:::

0 � : : : �

�
: (2.1)

If aij is the element of A in the i-th row and the j -th column, then the first step in the Gaussian

elimination process consists of multiplying A on the left by the lower triangular matrix L1 given

by

L1 D

�
1 0 0 : : : 0

�a21=a11 1 0 : : : 0

�a31=a11 0 1
:::

:::
:::

: : : 0

�an1=a11 0 : : : 0 1

�
; (2.2)

i.e., zeroes are produced in the first column by adding appropriate multiples of the first row to the

other rows. The next step is to produce zeroes below the diagonal in the second column, i.e.,˙
� � : : : �
0 � : : : �
:::

:::
:::

0 � : : : �

�
�!

�
� � � : : : �
0 � � �
0 0 � �
:::

:::
:::

0 0 � : : : �

�
: (2.3)

This can be obtained by multiplying L1A on the left by the lower triangular matrix L2 given by

L2 D

�
1 0 0 0 : : : 0

0 1 0 0 0

0 �a.1/
32 =a

.1/
22 1 0 0

0 �a.1/
42 =a

.1/
22 0 1 0

:::
:::

:::
: : : 0

0 �a.1/
n2 =a

.1/
22 0 : : : 0 1

�
(2.4)

where a
.1/
ij is the i; j -th element ofL1A. Continuing in this manner, we can define lower triangular

matrices L3; : : : ; Ln�1 so that Ln�1 � � �L1A is upper triangular, i.e.,

Ln�1 � � �L1A D U: (2.5)
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Taking the inverses of the matrices L1; : : : ; Ln�1, we can write A as

A D L�1
1 � � �L�1

n�1U: (2.6)

Let

L D L�1
1 � � �L�1

n�1: (2.7)

Then it follows from equation (2.6) that

A D LU: (2.8)

We will now show that L is lower triangular. Each of the matrices Lk can be written in the form

Lk D I � u.k/eT
k (2.9)

where ek is the vector whose components are all zero except for a one in the k-th position and u.k/

is a vector whose first k components are zero. The term u.k/eT
k

is an n� n matrix whose elements

are all zero except for those below the diagonal in the k-th column. In fact, the components of u.k/

are given by

u
.k/
i D

(

0 1 � i � k

a
.k�1/

ik
=a

.k�1/

kk
k < i

(2.10)

where a
.k�1/
ij is the i; j -th element of Lk�1 � � �L1A. Since eT

k
u.k/ D u

.k/

k
D 0, it follows that

�

I C u.k/eT
k

��

I � u.k/eT
k

�

D I C u.k/eT
k � u.k/eT

k � u.k/eT
k u

.k/eT
k

D I � u.k/
�

eT
k u

.k/
�

eT
k

D I; (2.11)

i.e.,

L�1
k D I C u.k/eT

k : (2.12)

Thus, L�1
k

is the same as Lk except for a change of sign of the elements below the diagonal in

column k. Combining equations (2.7) and (2.12), we obtain

L D
�

I C u.1/eT
1

�

� � �
�

I C u.n�1/eT
n�1

�

D I C u.1/eT
1 C � � � C u.n�1/eT

n�1: (2.13)

In this expression the cross terms dropped out since

u.i/eT
i u

.j /eT
j D u

.j /
i u.i/eT

j D 0 for i < j :

Equation (2.13) implies that L is lower triangular and that the k-th column ofL looks like the k-th

column of Lk with the signs reversed on the elements below the diagonal, i.e.,

L D

�
1 0 0 : : : 0

a21=a11 1 0 0

a31=a11 a
.1/
32 =a

.1/
22 1 0

:::
:::

: : :
:::

an1=a11 a
.1/
n2 =a

.1/
22 1

�
: (2.14)
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Having the LU factorization given in equation (2.8), it is possible to solve the system of equations

Ax D LUx D b

for any right-hand-side b. If we let y D Ux, then y can be found by solving the triangular system

Ly D b. Having y, x can be obtained by solving the triangular system Ux D y. Triangular

systems are very easy to solve. For example, in the system Ux D y, the last equation can be

solved for xn (the only unknown in this equation). Having xn, the next to the last equation can be

solved for xn�1 (the only unknown left in this equation). Continuing in this manner we can solve

for the remaining components of x. For the system Ly D b, we start by computing y1 and then

work our way down. Solving an upper triangular system is called back substitution. Solving a

lower triangular system is called forward substitution.

To compute L requires approximately n3=3 operations where an operation consists of an addition

and a multiplication. For each right-hand-side, solving the two triangular systems requires approx-

imately n2 operations. Thus, as far as solving systems of equations is concerned, having the LU

factorization of A is just as good as having the inverse of A and is less costly to compute.

2.1.2 Row Pivoting

There is one problem with Gaussian elimination that has yet to be addressed. It is possible for

one of the diagonal elements a
.k�1/

kk
that occur during Gaussian elimination to be zero or to be

very small. This causes a problem since we must divide by this diagonal element. If one of the

diagonals is exactly zero, the process obviously blows up. However, there can still be a problem

if one of the diagonals is small. In this case large elements are produced in both the L and U

matrices. These large entries lead to a loss of accuracy when there are subtractions involving these

big numbers. This problem can occur even for well behaved matrices. To eliminate this problem

we introduce row pivoting. In performing Gaussian elimination, it is not necessary to take the

equations in the order they are given. Suppose we are at the stage where we are zeroing out the

elements below the diagonal in the k-th column. We can interchange any of the rows from the

k-th row on without changing the structure of the matrix. In row pivoting we find the largest in

magnitude of the elements a
.k�1/

kk
; a

.k�1/

kC1;k
; : : : ; a

.k�1/

nk
and interchange rows to bring that element

to the k; k-position. Mathematically we can perform this row interchange by multiplying on the

left by the matrix Pk that is like the identity matrix with the appropriate rows interchanged. The

matrixPk has the propertyPkPk D I , i.e., Pk is its own inverse. With row pivoting equation (2.5)

is replaced by

Ln�1Pn�1 � � �L2P2L1P1A D U: (2.15)

We can write this equation in the form

Ln�1

�

Pn�1Ln�2P
�1
n�1

��

Pn�1Pn�2Ln�3P
�1
n�2P

�1
n�1

�

� � �
�

Pn�1 � � �P2L1P
�1
2 : : : P �1

n�1

��

Pn�1 � � �P1

�

A D U: (2.16)

Define L0
n�1 D Ln�1 and

L0
k D Pn�1 � � �PkC1LkP

�1
kC1 � � �P �1

n�1 k D 1; : : : ; n � 2: (2.17)
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Then equation (2.16) can be written

�

L0
n�1 � � �L0

1

��

Pn�1 � � �P1

�

A D U: (2.18)

Note that multiplying by Pj on the left only modifies rows j up to n. Similarly, multiplying by

P �1
j D Pj on the right only modifies columns j up to n. Therefore,

L0
k D

�

Pn�1 � � �PkC1

��

I C u.k/eT
k

��

PkC1 � � �Pn�1

�

D I C
�

Pn�1 � � �PkC1

�

u.k/eT
k

�

PkC1 � � �Pn�1

�

D I C v.k/eT
k (2.19)

where v.k/ is like u.k/ except the components kC 1 to n are permuted by Pn�1 � � �PkC1. Since L0
k

has the same form as Lk , it follows that the matrix L D .L0
1/

�1 � � � .L0
n�1/

�1 is lower triangular.

Thus, if we define P D Pn�1 � � �P1, equation (2.18) becomes

PA D LU: (2.20)

Of course, in practice we don’t need to explicitly construct the matrixP since the interchanges can

be kept tract of using a vector. To solve a system of equations Ax D b we replace the system by

PAx D Pb and proceed as before.

It is also possible to do column interchanges as well as row interchanges, but this is seldom used in

practice. By the construction of L all its elements are less than or equal to one in magnitude. The

elements of U are usually not very large, but there are some peculiar cases where large entries can

appear in U even with row pivoting. For example, consider the matrix

A D

�
1 0 0 : : : 0 1

�1 1 0 : : : 0 1

�1 �1 1
:::
:::

:::
:::

: : : 0 1

�1 �1 1 1

�1 �1 �1 : : : �1 1

�
:

In the first step no pivoting is necessary, but the elements 2 through n in the last column are

doubled. In the second step again no pivoting is necessary, but the elements 3 through n are

doubled. Continuing in this manner we arrive at

U D

�
1 1

1 2

1 4
: : :

:::

2n�1

�
:

Although growth like this in the size of the elements of U is theoretically possible, there are no

reports of this ever having happened in the solution of a real-world problem. In practice Gaussian

elimination with row pivoting has proven to be very stable.
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2.1.3 Iterative Refinement

If the solution of Ax D b is not sufficiently accurate, the accuracy can be improved by applying

Newtons method to the function f .x/ D Ax � b. If x.k/ is an approximate solution to f .x/ D 0,

then a Newton iteration produces an approximation x.kC1/ given by

x.kC1/ D x.k/ �
�

Df .x.k//
��1
f .x.k// D x.k/ � A�1

�

Ax.k/ � b
�

: (2.21)

An iteration step can be summarized as follows:

1. compute the residual r.k/ D Ax.k/ � b;

2. solve the system Ad .k/ D r.k/ using the LU factorization of A;

3. Compute x.kC1/ D x.k/ � d .k/.

The residual is usually computed in double precision. If the above calculations were carried out

exactly, the answer would be obtained in one iteration as is always true when applying Newton’s

method to a linear function. However, because of roundoff errors, it may require more than one

iteration to obtain the desired accuracy.

2.2 Cholesky Factorization

Matrices that are Hermitian (AH D A) and positive definite (xHAx > 0 for all x ¤ 0) occur

sufficiently often in practice that it is worth describing a variant of Gaussian elimination that is

often used for this class of matrices. Recall that Gaussian elimination amounted to a factorization

of a square matrix A into the product of a lower triangular matrix and an upper triangular matrix,

i.e., A D LU . The Cholesky factorization represents a Hermitian positive definite matrix A by the

product of a lower triangular matrix and its conjugate transpose, i.e., A D LLH . Because of the

symmetries involved, this factorization can be formed in roughly half the number of operations as

are needed for Gaussian elimination.

Let us begin by looking at some of the properties of positive definite matrices. If ei is the i-th

column of the identity matrix and A D .aij / is positive definite, then ai i D eT
i Aei > 0, i.e., the

diagonal components of A are real and positive. Suppose X is a nonsingular matrix of the same

size as the Hermitian, positive definite matrix A. Then

xH .XHAX/x D .Xx/HA.Xx/ > 0 for all x ¤ 0:

Thus, AHermitian positive definite implies thatXHAX is Hermitian positive definite. Conversely,

suppose XHAX is Hermitian positive definite. Then

A D .XX�1/HA.XX�1/ D .X�1/H .XHAX/.X�1/ is Hermitian positive definite.

16



Next we will show that the component of largest magnitude of a Hermitian positive definite matrix

A always lies on the diagonal. Suppose that jakl j D maxi;j jaij j and k ¤ l. If akl D jakl jei�kl , let

˛ D �e�i�kl and x D ek C ˛el . Then

xHAx D eT
k Aek C ˛eT

l Aek C ˛eT
k Ael C j˛j2eT

l Ael D akk C al l � 2jakl j � 0:

This contradicts the fact that A is positive definite. Therefore, maxi;j jaij j D maxi ai i . Suppose

we partition the Hermitian positive definite matrix A as follows

A D
�

B CH

C D

�

If y is a nonzero vector compatible with D, let xH D .0; yH/. Then

xHAx D .0; yH/

�

B CH

C D

��

0

y

�

D yHDy > 0;

i.e., D is Hermitian positive definite. Similarly, letting xH D .yH ; 0/, we can show that B is

Hermitian positive definite.

We will now show that if A is a Hermitian, positive-definite matrix, then there is a unique lower

triangular matrix L with positive diagonals such that A D LLH . This factorization is called the

Cholesky factorization. We will establish this result by induction on the dimension n. Clearly, the

result is true for n D 1. For in this case we can take L D .
p
a11/. Suppose the result is true for

matrices of dimension n � 1. Let A be a Hermitian, positive-definite matrix of dimension n. We

can partition A as follows

A D
�

a11 wH

w K

�

(2.22)

wherew is a vector of dimension n�1 andK is a .n�1/� .n�1/ matrix. It is easily verified that

A D
�

a11 wH

w K

�

D BH

 

1 0

0 K � wwH

a11

!

B (2.23)

where

B D
 p

a11

wHp
a11

0 I

!

: (2.24)

We will first show that the matrix B is invertible. If

Bx D
 p

a11

wHp
a11

0 I

!

�

x1

x2

�

D
 p

a11x1 C wH x2p
a11

x2

!

D 0;

then x2 D 0 and
p
a11x1 D x1 D 0. Therefore, B is invertible. From our discussion at the

beginning of this section it follows from equation (2.23) that the matrix

 

1 0

0 k � wwH

a11

!
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is Hermitian positive definite. By the results on the partitioning of a positive definite matrix, it

follows that the matrix

K � wwH

a11

is Hermitian positive definite. By the induction hypothesis, there exists a unique lower triangular

matrix OL with positive diagonals such that

K � wwH

a11

D OL OLH : (2.25)

Substituting equation (2.25) into equation (2.23), we get

A D BH

�

1 0

0 OL OLH

�

B D BH

�

1 0

0 OL

��

1 0

0 OLH

�

B D
 p

a11 0
wp
a11

OL

! p
a11

wHp
a11

0 OLH

!

(2.26)

which is the desired factorization of A. To show uniqueness, suppose that

A D
�

a11 wH

w K

�

D
�

l11 0

v OL

��

l11 vH

0 OLH

�

(2.27)

is a Cholesky factorization of A. Equating components in equation (2.27), we see that l211 D a11

and hence that l11 D p
a11. Also l11v D w or v D w=l11 D w=

p
a11. Finally, vvH C OL OLH D K

or K � vvH D K �wwH=a11 D OL OLH . Since OL OLH is the unique factorization of the .n � 1/ �
.n� 1/ Hermitian, positive-definite matrix K �wwH=a11, we see that the Cholesky factorization

of A is unique. It now follows by induction that there is a unique Cholesky factorization of any

Hermitian, positive-definite matrix.

The factorization in equation (2.23) is the basis for the computation of the Cholesky factorization.

The matrix BH is lower triangular. Since the matrix K � wwH=a11 is positive definite, it can

be factored in the same manner. Continuing in this manner until the center matrix becomes the

identity matrix, we obtain lower triangular matrices L1; : : : ; Ln such that

A D L1 � � �LnL
H
n � � �LH

1 :

Letting L D L1 � � �Ln, we have the desired Cholesky factorization.

As was mentioned previously, the number of operations in the Cholesky factorization is about half

the number in Gaussian elimination. Unlike Gaussian elimination the Cholesky method does not

need pivoting in order to maintain stability. The Cholesky factorization can also be written in the

form

A D LDLH

where D is diagonal and L now has all ones on the diagonal.

18



2.3 Elementary Unitary Matrices and the QR Factorization

In Gaussian elimination we saw that a square matrix A could be reduced to triangular form by

multiplying on the left by a series of elementary lower triangular matrices. This process can also

be expressed as a factorization A D LU where L is lower triangular and U is upper triangular. In

least squares problems the number of rows m in A is usually greater than the number of columns

n. The standard technique for solving least-squares problems of this type is to make use of a

factorization A D QR where Q is an m �m unitary matrix and R has the form

R D
� OR
0

�

with OR an n � n upper triangular matrix. The usual way of obtaining this factorization is to

reduce the matrix A to triangular form by multiplying on the left by a series of elementary unitary

matrices that are sometimes called Householder matrices (reflectors). We will show how to use

this QR factorization to solve least square problems. If OQ is the m � n matrix consisting of the

first n columns of Q, then

A D OQ OR:
This factorization is called the reduced QR factorization. Elementary unitary matrices are also

used to reduce square matrices to a simplified form (Hessenberg or tridiagonal) prior to eigenvalue

calculation.

There are several good computer implementations that use the Householder QR factorization to

solve the least squares problem. The LAPACK routine is called SGELS (DGELS,CGELS). In

Matlab the solution of the least squares problem is given by Anb. The QR factorization can be

obtained with the call [Q,R]=qr(A).

2.3.1 Gram-Schmidt Orthogonalization

A reduced QR factorization can be obtained by an orthogonalization procedure known as the

Gram-Schmidt process. Suppose we would like to construct an orthonormal set of vectors q1; : : : ; qn

from a given linearly independent set of vectors a1; : : : ; an. The process is recursive. At the j -th

step we construct a unit vector qj that is orthogonal to q1; : : : ; qj �1 using

vj D aj �
j �1
X

iD1

.qH
i aj /qi

qj D vj=kvj k:

The orthonormal basis constructed has the additional property

< q1; : : : ; qj >D< a1; : : : ; aj > j D 1; 2; : : : ; n:
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If we consider a1; : : : ; an as columns of a matrix A, then this process is equivalent to the matrix

factorization A D OQ OR where OQ D .q1; : : : ; qn/ and OR is upper triangular. Although the Gram-

Schmidt process is very useful in theoretical considerations, it does not lead to a stable numerical

procedure. In the next section we will discuss Householder reflectors, which lead to a more stable

procedure for obtaining a QR factorization.

2.3.2 Householder Reflections

Let us begin by describing the Householder reflectors. In this section we will restrict ourselves to

real matrices. Afterwards we will see that there are a number of generalizations to the complex

case. If v is a fixed vector of dimensionm with kvk D 1, then the set of all vectors orthogonal to v

is an .m � 1/-dimensional subspace called a hyperplane. If we denote this hyperplane by H , then

H D fu W vTu D 0g: (2.28)

Here vT denotes the transpose of v. If x is a point not onH , let Nx denote the orthogonal projection

of x ontoH (see Figure 2.1). The difference Nx � x must be orthogonal to H and hence a multiple

of v, i.e.,

Nx � x D ˛v or Nx D x C ˛v: (2.29)

x

x̂

x̄
v

H

Figure 2.1: Householder reflection

Since Nx lies on H and vT v D kvk2 D 1, we must have

vT Nx D vTx C ˛vT v D vT x C ˛ D 0: (2.30)

Thus, ˛ D �vT x and consequently

Nx D x � .vT x/v D x � vvT x D .I � vvT /x: (2.31)
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Define P D I � vvT . Then P is a projection matrix that projects vectors orthogonally onto H .

The projection Nx is obtained by going a certain distance from x in the direction �v. Figure 2.1

suggests that the reflection Ox of x across H can be obtained by going twice that distance in the

same direction, i.e.,

Ox D x � 2.vTx/v D x � 2vvT x D .I � 2vvT /x: (2.32)

With this motivation we define the Householder reflector Q by

Q D I � 2vvT kvk D 1: (2.33)

An alternate form for the Householder reflector is

Q D I � 2uuT

kuk2
(2.34)

where here u is not restricted to be a unit vector. Notice that, in this form, replacing u by a multiple

of u does not change Q. The matrix Q is clearly symmetric, i.e., QT D Q. Moreover,

QTQ D Q2 D .I � 2vvT /.I � 2vvT / D I � 2vvT � 2vvT C 4vvT vvT D I; (2.35)

i.e., Q is an orthogonal matrix. As with all orthogonal matricesQ preserves the norm of a vector,

i.e.,

kQxk2 D .Qx/TQx D xTQTQx D xT x D kxk2: (2.36)

To reduce a matrix to one that is upper triangular it is necessary to zero out columns below a certain

position. We will show how to construct a Householder reflector so that its action on a given vector

x is a multiple of e1, the first column of the identity matrix. To zero out a vector below row k we

can use a matrix of the form

Q D
�

I 0

0 Q

�

where I is the .k�1/� .k�1/ identity matrix andQ is a .m�kC1/� .m�kC1/Householder

matrix. Thus, for a given vector x we would like to choose a vector u so that Qx is a multiple of

the unit vector e1, i.e.,

Qx D x � 2.uTx/

kuk2
u D ˛e1: (2.37)

Since Q preserves norms, we must have j˛j D kxk. Therefore, equation (2.37) becomes

Qx D x � 2.uTx/

kuk2
u D ˙kxke1: (2.38)

It follows from equation (2.38) that u must be a multiple of the vector x � kxke1. Since u can be

replaced by a multiple of u without changing Q, we let

u D x � kxke1: (2.39)

It follows from the definition of u in equation (2.39) that

uT x D kxk2 � kxkx1 (2.40)
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and

kuk2 D uTu D kxk2 � kxkx1 � kxkx1 C kxk2 D 2.kxk2 � kxkx1/: (2.41)

Therefore,
2.uTx/

kuk2
D 1; (2.42)

and hence Qx becomes

Qx D x � 2.uTx/

kuk2
u D x � u D ˙kxke1 (2.43)

as desired. From what has been discussed so far, either of the signs in equation (2.39) would

produce the desired result. However, if x1 is very large compared to the other components, then it

is possible to lose accuracy through subtraction in the computation of u D x � kxke1. To prevent

this we choose u to be

u D x C sign.x1/kxke1 (2.44)

where sign.x1/ is defined by

sign.x1/ D
(

C1 x1 � 0

�1 x1 < 0:
(2.45)

With this choice of u, equation (2.43) becomes

Qx D � sign.x1/kxke1: (2.46)

In practice, u is often scaled so that u1 D 1, i.e.,

u D x C sign.x1/kxke1

x1 C sign.x1/kxk : (2.47)

With this choice of u,

kuk2 D 2kxk
kxk C jx1j : (2.48)

The matrixQ applied to a general vector y is given by

Qy D y � 2
uTy

kuk2
u: (2.49)

2.3.3 Complex Householder Matrices

Thee are several ways to generalize Householder matrices to the complex case. The most obvious

is to let

U D I � 2
uuH

kuk2

where the superscript H denotes conjugate transpose. It can be shown that a matrix of this form

is both Hermitian (U D UH ) and unitary (UHU D I ). However, it is sometimes convenient
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to be able to construct a U such that UHx is a real multiple of e1. This is especially true when

converting a Hermitian matrix to tridiagonal form prior to an eigenvalue computation. For in this

case the tridiagonal matrix becomes a real symmetric matrix even when starting with a complex

Hermitian matrix. Thus, it is not necessary to have a separate eigenvalue routine for the complex

case. It turns out that there is no Hermitian unitary matrixU , as defined above, that is guaranteed to

produce a real multiple of e1. Therefore, linear algebra libraries such as LAPACK use elementary

unitary matrices of the form

U D I � �wwH (2.50)

where � can be complex. These matrices are not in general Hermitian. If U is to be unitary, we

must have

I D UHU D .I � �wwH/.I � �wwH/ D I � .� C � � j� j2 kwk2/wwH

and hence

j� j2 kwk2 D 2Re.�/: (2.51)

Notice that replacing w by w=� and � by j�j2� in equation (2.50) leaves U unchanged. Thus, a

scaling of w can be absorbed in � . We would like to choose w and � so that

UHx D x � �.wHx/w D 
kxke1 (2.52)

where 
 D ˙1. It can be seen from equation (2.52) that w must be proportional to the vector

x � 
 kxke1. Since the factor of proportionality can be absorbed in � , we choose

w D x � 
 kxke1: (2.53)

Substituting this expression for w into equation (2.52), we get

UHx D x � �.wHx/.x � 
 kxke1/ D .1 � �wHx/x C �
.wHx/kxke1 D 
kxke1: (2.54)

Thus, we must have

�.wHx/ D 1 or � D 1

xHw
: (2.55)

This choice of � gives

UHx D 
kxke1:

It follows from equation (2.53) that

xHw D kxk2 � 
 kxkx1 (2.56)

and

kwk2 D .xH � 
 kxkeT
1 /.x � 
 kxke1/ D kxk2 � 
 kxkx1 � 
 kxkx1 C kxk2

D 2
�

kxk2 � 
 kxk Re.x1/
�

(2.57)
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Thus, it follows from equations (2.55)–(2.57) that

2Re.�/

j� j2 D � C �

��
D 1

�
C 1

�
D xHw CwHx

D
�

kxk2 � 
 kxkx1

�

C
�

kxk2 � 
 kxkx1

�

D 2
�

kxk2 � 2
 kxk Re.x1/
�

D kwk2;

i.e., the condition in equation (2.51) is satisfied. It follows that the matrix U defined by equation

(2.50) is unitary when w is defined by equation (2.53) and � is defined by equation (2.55). As

before we choose 
 to prevent the loss of accuracy due to subtraction in equation (2.53). In this

case we choose 
 D � sign
�

Re.x1/
�

. Thus, w becomes

w D x C sign
�

Re.x1/
�

kxke1: (2.58)

Let us define a real constant � by

� D sign
�

Re.x1/
�

kxk: (2.59)

With this definition w becomes

w D x C �e1: (2.60)

It follows that

xHw D kxk2 C �x1 D �2 C �x1 D �.� C x1/; (2.61)

and hence

� D 1

�.� C x1/
: (2.62)

In LAPACK w is scaled so that w1 D 1, i.e.,

w D x C �e1

x1 C �
: (2.63)

With this w, � becomes

� D jx1 C �j2
�.� C x1/

D .x1 C �/.x1 C �/

�.� C x1/
D x1 C �

�
: (2.64)

Clearly this � satisfies the inequality

j� � 1j D jx1j
j�j D jx1j

kxk � 1: (2.65)

It follows from equation (2.64) that � is real when x1 is real. Thus, U is Hermitian when x1 is real.

An alternate approach to defining a complex Householder matrix is to let

U D I � 2wwH

kwk2
: (2.66)
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This U is Hermitian and

UHU D
�

I � 2wwH

kwk2

��

I � 2wwH

kwk2

�

D I � 2wwH

kwk2
� 2wwH

kwk2
C 4kwk2wwH

kwk4
D I; (2.67)

i.e., U is unitary. We want to choose w so that

UHx D Ux D x � 2wHx

kwk2
w D 
 kxke1 (2.68)

where j
 j D 1. Multiplying equation (2.68) by xH , we get

xHUx D xHUHx D xHUx D 
 kxkx1: (2.69)

Since xHUx is real, it follows that 
x1 is real. If x1 D jx1jei�1, then 
 must have the form


 D ˙ei�1: (2.70)

It follows from equation (2.68) that w must be proportional to the vector x � ei�1kxke1. Since

multiplying w by a constant factor doesn’t change U , we take

w D x � ei�1kxke1: (2.71)

Again, to avoid accuracy problems, we choose the plus sign in the above formula, i.e.,

w D x C ei�1kxke1: (2.72)

It follows from this definition that

kwk2 D
�

xH C e�i�1kxkeT
1

��

x C e�i�1kxke1

�

D kxk2 C jx1jkxk C jx1jkxk C kxk2 D 2kxk
�

kxk C jx1j
�

(2.73)

and

wHx D
�

xH C e�i�1kxkeT
1

�

x D kxk2 C e�i�1x1kxk D kxk
�

kxk C jx1j
�

: (2.74)

Therefore,
2wHx

kwk2
D 1; (2.75)

and hence

Ux D x � w D x �
�

x C ei�1kxke1

�

D �ei�1kxke1: (2.76)

This alternate form for the Householder matrix has the advantage that it is Hermitian and that the

multiplier of wwH is real. However, it can’t in general map a given vector x into a real multiple of

e1. Both EISPACK and LINPACK use elementary unitary matrices similar to this. The LAPACK

form is not Hermitian, involves a complex multiplier of wwH , but can produce a real multiple of

e1 when acting on x. As stated before, this can be a big advantage when reducing matrices to

triangular form prior to an eigenvalue computation.
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2.3.4 Givens Rotations

Householder matrices are very good at producing long strings of zeroes in a row or column. Some-

times, however, we want to produce a zero in a matrix while altering as little of the matrix as

possible. This is true when dealing with matrices that are very sparse (most of the elements are al-

ready zero) or when performing many operations in parallel. The Givens rotations can sometimes

be used for this purpose. We will begin by considering the case where all matrices and vectors are

real. The complex case will be considered in the next section.

The two-dimensional matrix

R D
�

cos � � sin �

sin � cos �

�

rotates a 2-vector counterclockwise through an angle � . If we let c D cos � and s D sin � , then

the matrix R can be written as

R D
�

c �s
s c

�

where c2 C s2 D 1. If x is a 2-vector, we can determine c and s so that Rx is a multiple of e1.

Since

Rx D
�

cx1 � sx2

sx1 C cx2

�

;

R will have the desired property if c D x1=

q

x2
1 C x2

2 and s D �x2=

q

x2
1 C x2

2 . In fact Rx D
q

x2
1 C x2

2e1.

Givens matrices are an extension of this two-dimensional rotation to higher dimensions. For j > i ,

the givens matrixG.i; j / is anm�mmatrix that performs a counterclockwise rotation in the .i; j /

coordinate plane. It can be obtained by replacing the .i; i/ and .j; j / components of the m � m
identity matrix by c, the .i; j / component by �s and the .j; i/ component by s. It has the matrix

form

G.i; j / D

col i col j

row i

row j

ˇ
1

1
: : :

c �s
: : :

s c
: : :

1

1



(2.77)
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where c2 C s2 D 1. The matrix G.i; j / is clearly orthogonal. In terms of components

G.i; j /kl D

˚
1 k D l, k ¤ i and k ¤ j

c k D l, k D i or k D j

�s k D i , l D j

s k D j , l D i

0 otherwise

: (2.78)

Multiplying a vector by G.i; j / only affects the i and j components. If y D G.i; j /x, then

yk D

�
xk k ¤ i and k ¤ j

cxi � sxj k D i

sxi C cxj k D j

: (2.79)

Suppose we want to make yj D 0. We can do this by setting

c D xi
q

x2
i C x2

j

and s D �xj
q

x2
i C x2

j

: (2.80)

With this choice for c and s, y becomes

yk D

‚
xk k ¤ i and k ¤ j
q

x2
i C x2

j k D i

0 k D j

: (2.81)

Multiplying a matrix A on the left by G.i; j / only alters rows i and j . Similarly, Multiplying A

on the right by G.i; j / only alters columns i and j

2.3.5 Complex Givens Rotations

For the complex case we replace R in the previous section by

R D
�

c �s
s c

�

where c is real. (2.82)

It can be easily verified that R is unitary if and only if c and s satisfy

c2 C jsj2 D 1:

Given a 2-vector x, we want to choose R so that Rx is a multiple of e1. For R unitary, we must

have

Rx D 
kxke1 where j
 j D 1. (2.83)
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Multiplying equation (2.83) by RH , we get

x D RRHx D 
kxkRHe1 D 
kxk
�

c

�s

�

(2.84)

or

c D x1


kxk and s D �x2


kxk : (2.85)

We define sign.u/ for u complex by

sign.u/ D
(

u=juj u ¤ 0

1 u D 0:
(2.86)

If c is to be real, 
 must have the form


 D � sign.x1/ � D ˙1:

With this choice of 
 , c and s become

c D jx1j
�kxk and s D �x2

� sign.x1/kxk : (2.87)

If we want the complex case to reduce to the real case when x1 and x2 are real, then we can

choose � D sign
�

Re.x1/
�

. As before, we can construct G.i; j / by replacing the .i; i/ and .j; j /

components of the identity matrix by c, the .i; j / component by �s, and the .j; i/ component by

s. In the expressions for c and s in equation (2.87), we replace x1 by xi , x2 by xj , and kxk by
q

jxi j2 C jxj j2.

2.3.6 QR Factorization Using Householder Reflectors

Let A be an m� n matrix with m > n. Let Q1 be a Householder matrix that maps the first column

of A into a multiple of e1. ThenQ1A will have zeroes below the diagonal in the first column. Now

let

Q2 D
�

1 0

0 OQ2

�

where OQ2 is an .m � 1/ � .m � 1/ Householder matrix that will zero out the entries below the

diagonal in the second column ofQ1A. Continuing in this manner, we can constructQ2; : : : ;Qn�1

so that

Qn�1 � � �Q1A D
� OR
0

�

(2.88)

where OR is an n � n triangular matrix. The matricesQk have the form

Qk D
�

I 0

0 OQk

�

(2.89)
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where OQk is an .m � k C 1/ � .m� k C 1/ Householder matrix. If we define

QH D Qn�1 � � �Q1 and R D
� OR
0

�

; (2.90)

then equation (2.88) can be written

QHA D R: (2.91)

Moreover, since each Qk is unitary, we have

QHQ D .Qn�1 � � �Q1/.Q
H
1 � � �QH

n�1/ D I; (2.92)

i.e., Q is unitary. Therefore, equation (2.91) can be written

A D QR: (2.93)

Equation (2.93) is the desired factorization. The operations count for this factorization is approxi-

mately mn2 where an operation is an addition and a multiplication. In practice it is not necessary

to construct the matrixQ explicitly. Usually only the vectors v defining each Qk are saved.

If OQ is the matrix consisting of the first n columns of Q, then

A D OQ OR (2.94)

where OQ is a m � n matrix with orthonormal columns and OR is a n � n upper triangular matrix.

The factorization in equation (2.94) is the reduced QR factorization.

2.3.7 Uniqueness of the Reduced QR Factorization

In this section we will show that a matrix A of full rank has a unique reduced QR factorization if

we require that the triangular matrixR has positive diagonals. All other reducedQR factorizations

of A are simply related to this one with positive diagonals.

The reduced QR factorization can be written

A D .a1; a2; : : : ; an/ D .q1; q2; : : : ; qn/

˙
r11 r12 � � � r1n

r22 � � � r2n

: : :
:::

rnn

�
: (2.95)

If A has full rank, then all of the diagonal elements rjj must be nonzero. Equating columns in

equation (2.95), we get

aj D
j
X

kD1

rkjqk D rjj qj C
j �1
X

kD1

rkjqk

29



or

qj D 1

rjj

.aj �
j �1
X

kD1

rkjqk/: (2.96)

When j D 1 equation (2.96) reduces to

q1 D a1

r11

: (2.97)

Since q1 must have unit norm, it follows that

jr11j D ka1k: (2.98)

Equations (2.97) and (2.98) determine q1 and r11 up to a factor having absolute value one, i.e.,

there is a d1 with jd1j D 1 such that

r11 D d1 Or11 q1 D Oq1

d1

where Or11 D ka1k and Oq1 D a1= Or11.

For j D 2, equation (2.96) becomes

q2 D 1

r22

.a2 � r12q1/:

Since the columns q1 and q2 must be orthonormal, it follows that

0 D qH
1 q2 D 1

r22

.qH
1 a2 � r12/

and hence that

r12 D qH
1 a2 D d1 OqH

1 a2: (2.99)

Here we have used the fact that d1 D 1=d1. Since q2 has unit norm, it follows that

1 D kq2k D 1

jr22jka2 � r12q1k D 1

jr22jka2 � .d1 OqH
1 a2/ Oq1=d1k D 1

jr22jka2 � . OqH
1 a2/ Oq1k

and hence that

jr22j D ka2 � . OqH
1 a2/ Oq1k � Or22:

Therefore, there exists a scalar d2 with jd2j D 1 such that

r22 D d2 Or22 and q2 D Oq2=d2

where Oq2 D
�

a2 � . OqH
1 a2/ Oq1

�

= Or22.

For j D 3, equation (2.96) becomes

q3 D 1

r33

.a3 � r13q1 � r23q2/:
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Since the columns q1, q2 and q3 must be orthonormal, it follows that

0 D qH
1 q3 D 1

r33

.qH
1 a3 � r13/

0 D qH
2 q3 D 1

r33

.qH
2 a3 � r23/

and hence that

r13 D qH
1 a3 D d1 OqH

1 a3

r23 D qH
2 a3 D d2 OqH

2 a3:

Since q3 has unit norm, it follows that

1 D kq3k D 1

jr33jka3 � r13q1 � r23q2k D 1

jr33jka3 � . OqH
1 a3/ Oq1 � . OqH

2 a3/ Oq2k

and hence that

jr33j D ka3 � . Oq1
Ha3/ Oq1 � . Oq2

Ha3/ Oq2k � Or33:

Therefore, there exists a scalar d3 with jd3j D 1 such that

r33 D d3 Or33 and q3 D Oq3=d3 (2.100)

where Oq3 D
�

a3 � . Oq1
Ha3/ Oq1 � . Oq2

Ha3/ Oq2

�

= Or33. Continuing in this way we obtain the unitary

matrix OQ D . Oq1; : : : ; Oqn/ and the triangular matrix

OR D

˙
Or11 Or12 � � � Or1n

Or22 � � � Or2n

: : :
:::

Ornn

�
such that A D OQ OR is the unique reduced QR factorization of A with R having positive diagonal

elements. If A D QR is any other reduced QR factorization of A, then

R D

�
d1

: : :

dn

�
OR

and

Q D OQ

�
1=d1

: : :

1=dn

�
D OQ

�
d1

: : :

dn

�
where jd1j D � � � D jdnj D 1.
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2.3.8 Solution of Least Squares Problems

In this section we will show how to use the QR factorization to solve the least squares problem.

Consider the system of linear equations

Ax D b (2.101)

where A is an m � n matrix with m > n. In general there is no solution to this system of equa-

tions. Instead we seek to find an x so that kAx � bk is as small as possible. In view of the QR

factorization, we have

kAx � bk2 D kQRx � bk2 D kQ.Rx �QHb/k2 D kRx �QHbk2: (2.102)

We can write Q in the partitioned formQ D .Q1;Q2/ where Q1 is an m � n matrix. Then

Rx �QHb D
� ORx
0

�

�
�

QH
1 b

QH
2 b

�

D
� ORx �QH

1 b

�QH
2 b

�

: (2.103)

It follows from equation (2.103) that

kRx �QHbk2 D k ORx �QH
1 bk2 C kQH

2 bk2: (2.104)

Combining equations (2.102) and (2.104), we get

kAx � bk2 D k ORx �QH
1 bk2 C kQH

2 bk2: (2.105)

It can be easily seen from this equation that kAx � bk is minimized when x is the solution of the

triangular system
ORx D QH

1 b (2.106)

when such a solution exists. This is the standard way of solving least square systems. Later we will

discuss the singular value decomposition (SVD) that will provide even more information relative

to the least squares problem. However, the SVD is much more expensive to compute than the QR

decomposition.

2.4 The Singular Value Decomposition

The Singular Value Decomposition (SVD) is one of the most important and probably one of the

least well known of the matrix factorizations. It has many applications in statistics, signal process-

ing, image compression, pattern recognition, weather prediction, and modal analysis to name a

few. It is also a powerful diagnostic tool. For example, it provides approximations to the rank and

the condition number of a matrix as well as providing orthonormal bases for both the range and

the null space of a matrix. It also provides optimal low rank approximations to a matrix. The SVD

is applicable to both square and rectangular matrices. In this regard it provides a general solution

to the least squares problem.
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The SVD was first discovered by differential geometers in connection with the analysis of bilinear

forms. Eugenio Beltrami [1] (1873) and Camille Jordan [10] (1874) independently discovered

that the singular values of the matrix associated with a bilinear form comprise a complete set

of invariants for the form under orthogonal substitutions. The first proof of the singular value

decomposition for rectangular and complex matrices seems to be by Eckart and Young [5] in 1939.

They saw it as a generalization of the principal axis transformation for Hermitian matrices.

We will begin by deriving the SVD and presenting some of its most important properties. We will

then discuss its application to least squares problems and matrix approximation problems. Follow-

ing this we will show how singular values can be used to determine the condition of a matrix (how

close the rows or columns are to being linearly dependent). We will conclude with a brief outline

of the methods used to compute the SVD. Most of the methods are modifications of methods used

to compute eigenvalues and vectors of a square matrix. The details of the computational methods

are beyond the scope of this presentation, but we will provide references for those interested.

2.4.1 Derivation and Properties of the SVD

Theorem 1. (Singular Value Decomposition) Let A be a nonzero m � n matrix. Then there exists

an orthonormal basis u1; : : : ; um of m-vectors, an orthonormal basis v1; : : : ; vn of n-vectors, and

positive numbers �1; : : : ; �r such that

1. u1; : : : ; ur is a basis of the range of A

2. vrC1; : : : ; vn is a basis of the null space of A

3. A D
Pr

kD1 �kukv
H
k
:

Proof: AHA is a Hermitian n � n matrix that is positive semidefinite. Therefore, there is an

orthonormal basis v1; : : : ; vn and nonnegative numbers �2
1 ; : : : ; �

2
n such

AHAvk D �2
kvk k D 1; : : : ; n: (2.107)

Since A is nonzero, at least one of the eigenvalues �2
k

must be positive. Let the eigenvalues be

arranged so that �2
1 � �2

2 � � � � � �2
r > 0 and �2

rC1 D � � � D �2
n D 0. Consider now the vectors

Av1; : : : ; Avn. We have

.Avi/
HAvj D vH

i A
HAvj D �2

j v
H
i vj D 0 i ¤ j; (2.108)

i.e., Av1; : : : ; Avn are orthogonal. When i D j

kAvik2 D vH
i A

HAvi D �2
i v

H
i vi D �2

i > 0 i D 1; : : : ; r

D 0 i > r: (2.109)

Thus, AvrC1 D � � � D Avn D 0 and hence vrC1; : : : ; vn belong to the null space of A. Define

u1; : : : ; ur by

ui D .1=�i/Avi i D 1; : : : ; r: (2.110)
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Then u1; : : : ; ur is an orthonormal set of vectors in the range of A that span the range of A. Thus,

u1; : : : ; ur is a basis for the range of A. The dimension r of the range of A is called the rank of

A. If r < m, we can extend the set u1; : : : ; ur of orthonormal vectors to an orthonormal basis

u1; : : : ; um of m-space using the Gram-Schmidt process. If x is an n-vector, we can write x in

terms of the basis v1; : : : ; vn as

x D
n
X

kD1

.vH
k x/vk: (2.111)

It follows from equations (2.110) and (2.111) that

Ax D
n
X

kD1

.vH
k x/Avk D

r
X

kD1

.vH
k x/�kuk D

r
X

kD1

�kukv
H
k x: (2.112)

Since x in equation (2.112) was arbitrary, we must have

A D
r
X

kD1

�kukv
H
k : (2.113)

The representation of A in equation (2.113) is called the singular value decomposition (SVD). If

x belongs to the null space of A (Ax D 0), then it follows from equation (2.112) and the linear

independence of the vectors u1; : : : ; ur that vH
k
x D 0 for k D 1; : : : ; r . It then follows from

equation (2.111) that

x D
n
X

kDrC1

.vH
k x/vk;

i.e., vrC1; : : : ; vn span the null space of A. Since vrC1; : : : ; vn are orthonormal vectors belonging

to the null space of A, they form a basis for the null space of A.

We will now express the SVD in matrix form. Define U D .u1; : : : ; um/, V D .v1; : : : ; vn/, and

S D diag.�1; : : : ; �r/. If r < min.m:n/, then the SVD can be written in the matrix form

A D U

�

S 0

0 0

�

V H : (2.114)

If r D m < n, then the SVD can be written in the matrix form

A D U
�

S 0
�

V H : (2.115)

If r D n < m, then the SVD can be written in the matrix form

A D U

�

S

0

�

V H : (2.116)

If r D m D n, then the SVD can be written in the matrix form

A D USV H : (2.117)
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Generally we write the SVD in the form (2.114) with the understanding that some of the zero

portions might collapse and disappear.

We next give a geometric interpretation of the SVD. For this purpose we will restrict ourselves to

the real case. Let x be a point on the unit sphere, i.e., kxk D 1. Since u1; : : : ; ur is a basis for the

range of A, there exist numbers y1; : : : ; yk such that

Ax D
r
X

kD1

ykuk

D
r
X

kD1

�k.v
T
k x/uk :

Therefore, yk D �k.v
T
k
x/, k D 1; : : : ; r . Since the columns of V form an orthonormal basis, we

have

x D
n
X

kD1

.vT
k x/vk:

Therefore,

kxk2 D
n
X

kD1

.vT
k x/

2 D 1:

It follows that
y2

1

�2
1

C � � � C y2
r

�2
r

D .vT
1 x/

2 C � � � C .vT
r x/

2 � 1:

Here equality holds when r D n. Thus, the image of x lies on or interior to the hyper ellipsoid

with semi axes �1u1; : : : ; �rur . Conversely, if y1; : : : ; yr satisfy

y2
1

�2
1

C � � � C y2
r

�2
r

� 1;

we define ˛2 D 1 �
Pr

kD1.yk=�k/
2 and

x D
r
X

kD1

yk

�k

vk C ˛vrC1:

Since vrC1 is in the null space of A and Avk D �kuk (k � r), it follows that

Ax D
r
X

kD1

yk

�k

Avk C ˛AvrC1 D
r
X

kD1

ykuk:

In addition,

kxk2 D
r
X

kD1

y2
k

�2
k

C ˛2 D 1:
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Thus, we have shown that the image of the unit sphere kxk D 1 under the mapping A is the hyper

ellipsoid
y2

1

�2
1

C � � � C y2
r

�2
r

� 1

relative to the basis u1; : : : ; ur . When r D n, equality holds and the image is the surface of the

hyper ellipsoid
y2

1

�2
1

C � � � C y2
r

�2
n

D 1:

2.4.2 The SVD and Least Squares Problems

In least squares problems we seek an x that minimizes kAx � bk. In view of the singular value

decomposition, we have

kAx � bk2 D












U

�

S 0

0 0

�

V Hx � b












2

D












U

��

S 0

0 0

�

V Hx � UHb

�












2

D












�

S 0

0 0

�

V Hx � UHb













2

: (2.118)

If we define

y D
�

y1

y2

�

D V Hx (2.119)

Ob D
 

Ob1

Ob2

!

D UHb: (2.120)

then equation (2.118) can be written

kAx � bk2 D












 

Sy1 � Ob1

� Ob2

!













2

D kSy1 � Ob1k2 C k Ob2k2: (2.121)

It is clear from equation (2.121) that kAx � bk is minimized when y1 D S�1 Ob1. Therefore, the y

that minimizes kAx � bk is given by

y D
�

S�1 Ob1

y2

�

y2 arbitrary. (2.122)

In view of equation (2.119), the x that minimizes kAx � bk is given by

x D Vy D V

�

S�1 Ob1

y2

�

y2 arbitrary. (2.123)
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Since V is unitary, it follows from equation (2.123) that

kxk2 D kS�1 Ob1k2 C ky2k2:

Thus, there is a unique x of minimum norm that minimizes kAx�bk, namely the x corresponding

to y2 D 0. This x is given by

x D V

�

S�1 Ob1

0

�

D V

�

S�1 0

0 0

�

 

Ob1

Ob2

!

D V

�

S�1 0

0 0

�

UHb:

The matrix multiplying b on the right-hand-side of this equation is called the generalized inverse

of A and is denoted by AC, i.e.,

AC D V

�

S�1 0

0 0

�

UH : (2.124)

Thus, the minimum norm solution of the least squares problem is given by x D ACb. The n �m
matrix AC plays the same role in least squares problems that A�1 plays in the solution of linear

equations. We will now show that this definition of the generalized inverse gives the same result

as the classical Moore-Penrose conditions.

Theorem 2. If A has a singular value decomposition given by

A D U

�

S 0

0 0

�

V H ;

then the matrix X defined by

X D AC D V

�

S�1 0

0 0

�

UH

is the unique solution of the Moore-Penrose conditions:

1. AXA D A

2. XAX D X

3. .AX/H D AX

4. .XA/H D XA.
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Proof:

AXA D U

�

S 0

0 0

�

V HV

�

S�1 0

0 0

�

UHU

�

S 0

0 0

�

V H

D U

�

S 0

0 0

��

I 0

0 0

�

V H

D U

�

S 0

0 0

�

V H

D A;

i.e., X satisfies condition (1).

XAX D V

�

S�1 0

0 0

�

UHU

�

S 0

0 0

�

V HV

�

S�1 0

0 0

�

UH

D V

�

S�1 0

0 0

�

UH

D X;

i.e., X satisfies condition (2). Since

AX D U

�

S 0

0 0

�

V HV

�

S�1 0

0 0

�

UH D U

�

I 0

0 0

�

UH

and

XA D V

�

S�1 0

0 0

�

UHU

�

S 0

0 0

�

V H D V

�

I 0

0 0

�

V H ;

it follows that both AX and XA are Hermitian, i.e., X satisfies conditions (3) and (4). To show

uniqueness let us suppose that both X and Y satisfy the Moore-Penrose conditions. Then

X D XAX by (2)

D X.AX/H D XXHAH by (3)

D XXH.AYA/H D XXHAHYHAH by (1)

D XXHAH .AY /H D XXHAHAY by (3)

D X.AX/HAY D XAXAY by (3)

D XAY by (2)

D X.AYA/Y by (1)

D XA.YA/Y D XA.YA/HY D XAAHY HY by (4)

D .XA/HAHY HY D AHXHAHY HY by (4)

D .AXA/HY HY D AHYHY by (1)

D .YA/HY D YAY by (4)

D Y by (2):

Thus, there is only one matrixX satisfying the Moore-Penrose conditions.
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2.4.3 Singular Values and the Norm of a Matrix

Let A be an m � n matrix. By virtue of the SVD, we have

Ax D
r
X

kD1

�k.v
H
k x/uk for any n-vector x: (2.125)

Since the vectors u1; : : : ; ur are orthonormal, we have

kAxk2 D
r
X

kD1

�2
k jvH

k xj2 � �2
1

r
X

kD1

jvH
k xj2 � �2

1 kxk2: (2.126)

The last inequality comes from the fact that x has the expansion x D
Pn

kD1.v
H
k
x/vk in terms of

the orthonormal basis v1; : : : ; vn and hence

kxk2 D
n
X

kD1

jvH
k xj2:

Thus, we have

kAxk � �1kxk for all x. (2.127)

Since Av1 D �1u1, we have kAv1k D �1 D �1kv1k. Hence,

max
x¤0

kAxk
kxk D �1; (2.128)

i.e., A can’t stretch the length of a vector by a factor greater than �1. One of the definitions of the

norm of a matrix is

kAk D sup
x¤0

kAxk
kxk : (2.129)

It follows from equations (2.128) and (2.129) that kAk D �1 (the maximum singular value of A).

If A is of full rank (r=n), then it follows by a similar argument that

min
x¤0

kAxk
kxk D �n:

If A is an m � n matrix and B is an n � p matrix, then for every p-vector x we have

kABxk � kAk kBxk � kAk kBk kxk

and hence kABk � kAk kBk.

2.4.4 Low Rank Matrix Approximations

You can think of the rank of a matrix as a measure of redundancy. Matrices of low rank should

have lots of redundancy and hence should be capable of specification by less parameters than the
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total number of entries. For example, if the matrix consists of the pixel values of a digital image,

then a lower rank approximation of this image should represent a form of image compression. We

will make this concept more precise in this section.

One choice for a low rank approximation to A is the matrix Ak D
Pk

iD1 �iuiv
H
i for k < r . Ak is

a truncated SVD expansion of A. Clearly

A � Ak D
r
X

iDkC1

�iuiv
H
i : (2.130)

Since the largest singular value of A � Ak is �kC1, we have

kA � Akk D �kC1: (2.131)

SupposeB is anotherm�n matrix of rank k. Then the null space N ofB has dimension n�k. Let

w1; : : : ; wn�k be a basis for N . The nC 1 n-vectors w1; : : : ; wn�k ; v1; : : : ; vkC1 must be linearly

dependent, i.e., there are constants ˛1; : : : ; an�k and ˇ1; : : : ; ˇkC1, not all zero, such that

n�k
X

iD1

˛iwi C
kC1
X

iD1

ˇivi D 0:

Not all of the ˛i can be zero since v1; : : : ; vkC1 are linearly independent. Similarly, not all of the

ˇi can be zero. Therefore, the vector h defined by

h D
n�k
X

iD1

˛iwi D �
kC1
X

iD1

ˇivi

is a nonzero vector that belongs to both N and < v1; : : : ; vkC1 >. By proper scaling, we can

assume that h is a vector with unit norm. Since h belongs to < v1; : : : ; vkC1 >, we have

h D
kC1
X

iD1

.vH
i h/vi : (2.132)

Therefore,

khk2 D
kC1
X

iD1

jvH
i hj2: (2.133)

Since Avi D �iui for i D 1; : : : ; r , it follows from equation (2.132) that

Ah D
kC1
X

iD1

.vH
i h/Avi D

kC1
X

iD1

.vH
i h/�iui : (2.134)

Therefore,

kAhk2 D
kC1
X

iD1

jvH
i hj2�2

i � �2
kC1

kC1
X

iD1

jvH
i hj2 D �2

kC1khk2: (2.135)
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Since h belongs to the null space N , we have

kA � Bk2 � k.A� B/hk2 D kAhk2 � �2
kC1khk2 D �2

kC1: (2.136)

Combining equations (2.131) and (2.136), we obtain

kA � Bk � �kC1 D kA � Akk: (2.137)

Thus, Ak is the rank k matrix that is closest to A.

2.4.5 The Condition Number of a Matrix

Suppose A is an n � n invertible matrix and x is the solution of the system of equations Ax D b.

We want to see how sensitive x is to perturbations of the matrix A. Let x C ıx be the solution to

the perturbed system .AC ıA/.x C ıx/ D b. Expanding the left-hand-side of this equation and

neglecting the second order perturbations ıA ıx, we get

ıAx C Aıx D 0 or ıx D �A�1ıAx: (2.138)

It follows from equation (2.138) that

kıxk � kA�1kkıAkkxk

or
kıxk=kxk
kıAk=kAk � kA�1kkAk: (2.139)

The quantity kA�1kkAk is called the condition number of A and is denoted by �.A/, i.e.,

�.A/ D kA�1kkAk:

Thus, equation (2.139) can be written

kıxk=kxk
kıAk=kAk � �.A/: (2.140)

We have seen previously that kAk D �1, the largest singular value. Since A�1 has the singular

value decomposition A�1 D VS�1UH , it follows that kA�1k D 1=�n. Therefore, the condition

number is given by

�.A/ D �1

�n

: (2.141)

The condition number is sort of an aspect ratio of the hyper ellipsoid that A maps the unit sphere

into.
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2.4.6 Computation of the SVD

The methods for calculating the SVD are all variations of methods used to calculate eigenvalues

and eigenvectors of Hermitian Matrices. The most natural procedure would be to follow the deriva-

tion of the SVD and compute the squares of the singular values and the unitary matrix V by solving

the eigenproblem for AHA. The U matrix would then be obtained from AV . Unfortunately, this

procedure is not very accurate due to the fact that the singular values of AHA are the squares of the

singular values of A. As a result the ratio of largest to smallest singular value can be much larger

for AHA than for A. There are, however, implicit methods that solve the eigenproblem for AHA

without ever explicitly forming AHA. Most of the SVD algorithms first reduce A to bidiagonal

form (all elements zero except the diagonal and first superdiagonal). This can be accomplished

using householder reflections alternately on the left and right as shown in figure 2.2.

A1 D UH
1 A D

ˇ
x x x x

0 x x x

0 x x x

0 x x x

0 x x x



�! A2 D A1V1 D

ˇ
x x 0 0

0 x x x

0 x x x

0 x x x

0 x x x



�!

A3 D UH
2 A2 D

ˇ
x x 0 0

0 x x x

0 0 x x

0 0 x x

0 0 x x



�! A4 D A3V2 D

ˇ
x x 0 0

0 x x 0

0 0 x x

0 0 x x

0 0 x x



�!

A5 D UH
3 A4 D

ˇ
x x 0 0

0 x x 0

0 0 x x

0 0 0 x

0 0 0 x



�! A6 D UH

4 A5 D

ˇ
x x 0 0

0 x x 0

0 0 x x

0 0 0 x

0 0 0 0



:

Figure 2.2: Householder reduction of a matrix to bidiagonal form.

Since the application of the Householder reflections on the right don’t try to zero all the elements

to the right of the diagonal, they don’t affect the zeroes already obtained in the columns. We have

seen that, even in the complex case, the Householder matrices can be chosen so that the resulting

bidiagonal matrix is real. Notice also that when the number of rows m is greater than the number

of columns n, the reduction produces zero rows after row n. Similarly, when n > m, the reduction

produces zero columns after column m. If we replace the products of the Householder reflections

by the unitary matrices OU and OV , the reduction to a bidiagonal B can be written as

B D OUHA OV or A D OUB OV H : (2.142)
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If B has the SVD B D NU˙ NV T , then A has the SVD

A D OU . NU˙ NV T / OV H D . OU NU /˙. OV NV /H D U˙V H ;

where U D OU NU and V D OV NV . Thus, it is sufficient to find the SVD of the real bidiagonal matrix

B . Moreover, it is not necessary to carry along the zero rows or columns of B . For if the square

portion B1 of B has the SVD B1 D U1˙1V
T

1 , then

B D
�

B1

0

�

D
�

U1˙1V
T

1

0

�

D
�

U1 0

0 I

��

˙1

0

�

V T
1 (2.143)

or

B D .B1; 0/ D .U1˙1V
T

1 ; 0/ D U1.˙1; 0/

�

V1 0

0 I

�T

: (2.144)

Thus, it is sufficient to consider the computation of the SVD for a real, square, bidiagonal matrix

B .

In addition to the implicit methods of finding the eigenvalues of BTB , some methods look instead

at the symmetric matrix

�

0 BT

B 0

�

. If the SVD of B is B D U˙V T , then

�

0 BT

B 0

�

has the

eigenequation
�

0 BT

B 0

��

V V

U �U

�

D
�

V V

U �U

��

˙ 0

0 �˙

�

: (2.145)

In addition, the matrix

�

0 BT

B 0

�

can be reduced to a real tridiagonal matrix T by the relation

T D P TBP (2.146)

where P D .e1; enC1; e2; enC2; : : : ; en; e2n/ is a permutation matrix formed by a rearrangement

of the columns e1; e2; : : : ; e2n of the 2n � 2n identity matrix. The matrix P is unitary and is

sometimes called the perfect shuffle since its operation on a vector mimics a perfect card shuffle of

the components. The algorithms based on this double size Symmetric matrix don’t actually form

the double size matrix, but make efficient use of the symmetries involved in this eigenproblem.

For those interested in the details of the various SVD algorithms, I would refer you to the book by

Demmel [4].

In Matlab the SVD can be obtained by the call [U,S,V]=svd(A). In LAPACK the general driver

routines for the SVD are SGESVD, DGESVD, and CGESVD depending on whether the matrix is

real single precision, real double precision, or complex.
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Chapter 3

Eigenvalue Problems

Eigenvalue problems occur quite often in Physics. For example, in Quantum Mechanics eigen-

values correspond to certain energy states; in structural mechanics problems eigenvalues often

correspond to resonance frequencies of the structure; and in time evolution problems eigenvalues

are often related to the stability of the system.

Let A be an m � m square matrix. A nonzero vector x is an eigenvector of A and � is its corre-

sponding eigenvalue, if

Ax D �x:

The set of vectors

V� D fx W Ax D �xg
is a subspace called the eigenspace corresponding to �. The equation Ax D �x is equivalent to

.A � �I/x D 0. If � is an eigenvalue, then the matrix A � �I is singular and hence

det.A� �I/ D 0:

Thus, the eigenvalues ofA are roots of a polynomial equation of order n. This polynomial equation

is called the characteristic equation ofA. Conversely, if p.z/ D a0 Ca1zC� � �Can�1z
n�1 Canz

n

is an arbitrary polynomial of degree n (an ¤ 0), then the matrix�
0 �a0=an

1 0 �a1=an

1 0 �a2=an

1
: : :

:::
: : : 0 �an�2=an

1 �an�1=an

�
has p.z/ D 0 as its characteristic equation.

In some problems an eigenvalue � might correspond to a multiple root of the characteristic equa-

tion. The multiplicity of the root � is called its algebraic multiplicity. The dimension of the space
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V� is called its geometric multiplicity. If for some eigenvalue � of A, the geometric multiplicity

of � does not equal its geometric multiplicity, this eigenvalue is said to be defective. A matrix

with one or more defective eigenvalues is said to be a defective matrix. An example of a defective

matrix is the matrix �
2 1 0

0 2 1

0 0 2

�
:

This matrix has the single eigenvalue 2 with algebraic multiplicity 3. However, the eigenspace

corresponding to the eigenvalue 2 has dimension 1. All the eigenvectors are multiples of e1. In

these notes we will only consider eigenvalue problems involving Hermitian matrices (AH D A).

We will see that all such matrices are non defective.

If S is a nonsingular m �m matrix, then the matrix S�1AS is said to be similar to A. Since

det.S�1AS � �I/ D det
�

S�1.A � �I/S
�

D det.S�1/ det.A � �I/ det.S/ D det.A � �I/;

it follows that S�1AS andA have the same characteristic equation and hence the same eigenvalues.

It can be shown that a Hermitian matrix A always has a complete set of orthonormal eigenvectors.

If we form the unitary matrixU whose columns are the eigenvectors belonging to this orthonormal

set, then

AU D U� or UHAU D � (3.1)

where� is a diagonal matrix whose diagonal entries are the eigenvalues. Thus, a Hermitian matrix

is similar a diagonal matrix. Since a diagonal matrix is clearly non defective, it follows that all

Hermitian matrices are non defective.

If e is a unit eigenvector of the Hermitian matrix A and � is the corresponding eigenvalue, then

Ae D �e and hence � D eHAe:

It follows that � D .eHAe/H D eHAHe D eHAe D �, i.e., the eigenvalues of a Hermitian

matrix are real.

It was shown by Abel, Galois and others in the nineteenth century that there can be no alge-

braic expression for the roots of a polynomial equation whose order is greater than four. Since

eigenvalues are roots of the characteristic equation and since the roots of any polynomial are the

eigenvalues of some matrix, there can be no purely algebraic method for computing eigenvalues.

Thus, algorithms for finding eigenvalues must at some stage be iterative in nature. The methods

to be discussed here first reduce the Hermitian matrix A to a real, symmetric, tridiagonal matrix

T by means of a unitary similarity transformation. The eigenvalues of T are then found using

certain iterative procedures. The most common iterative procedures are the QR algorithm and the

divide-and-conquer algorithm.
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3.1 Reduction to Tridiagonal Form

The reduction to tridiagonal form can be done with Householder reflectors. I will illustrate the

procedure with a 5 � 5 matrix A, i.e.,

A D

ˇ
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �



:

We can zero out the elements in the first column from row three to the end using a Householder

reflector of the form

U1 D
�

1 0

0 Q1

�

:

This reflector does not alter the elements of the first row. Thus, multiplying U1A on the right

by UH
1 zeros out the elements of the first row from column three on and doesn’t affect the first

column. Hence,

Q1AQ
H
1 D

ˇ
� � 0 0 0

� � � � �
0 � � � �
0 � � � �
0 � � � �



:

Moreover, the Householder reflector can be chosen so that the 12 element and the 21 element are

real. We can continue in this manner to zero out the elements below the first subdiagonal and

above the first superdiagonal. Furthermore, the Householder reflectors can be chosen so that the

super and sub diagonals are real. The diagonals of the resulting tridiagonal matrix are real since the

transformations have preserved the Hermitian property. Collecting the products of the Householder

reflectors into a unitary matrix U , we have

UAUH D T or A D UHT U

where T is a real, symmetric, tridiagonal matrix. Since A and T are similar, they have the same

eigenvalues. Thus, we only need eigenvalue routines for real symmetric matrices. In the following

sections we will assume that the matrix A is real and symmetric

3.2 The Power Method

The power method is one of the oldest methods for obtaining the eigenvectors of a matrix. It is

no longer used for this purpose because of its slow convergence, but it does underlie some of the

practical algorithms. Let v1; v2; : : : ; vn be an orthonormal basis of eigenvectors of the matrix A
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and let �1; : : : ; �n be the corresponding eigenvalues. We will assume that the eigenvalues and

eigenvectors are so ordered that

j�1j � j�2j � � � � � j�nj:

We will assume further that j�1j > j�2j. Let v be an arbitrary vector with kvk D 1. Then there

exist constants c1; : : : ; cn such that

v D c1v1 C � � � C cnvn: (3.2)

We will make the further assumption that c1 ¤ 0. Successively applying A to equation (3.2), we

obtain

Akv D c1A
kv1 C � � � C cnA

kvn D c1�
k
1v1 C � � � C cn�

k
nvn: (3.3)

You can see from equation (3.3) that the term c1�
k
1v1 will eventually dominate and thus Akv,

if properly scaled at each step to prevent overflow, will approach a multiple of the eigenvector

v1. This convergence can be slow if there are other eigenvalues close in magnitude to �1. The

condition c1 ¤ 0 is equivalent to the condition

< v > \ < v2; : : : ; vn >D f0g:

3.3 The Rayleigh Quotient

The Rayleigh quotient of a vector x is the real number

r.x/ D xTAx

xT x
:

If x is an eigenvector of A corresponding to the eigenvalue �, then r.x/ D �. If x is any nonzero

vector, then

kAx � ˛xk2 D .xTAT � ˛xT /.Ax � ˛x/
D xTATAx � 2˛xTAx C ˛2xT x

D xTATAx � 2˛r.x/xT x C ˛2xT x C r2.x/xT x � r2.x/xT x

D xTATAx C xT x
�

˛ � r.x/
�2 � r2.x/xT x:

Thus, ˛ D r.x/ minimizes kAx � ˛xk. If x is an approximate eigenvector, then r.x/ is an

approximate eigenvalue.

3.4 Inverse Iteration with Shifts

For any � that is not an eigenvalue of A, the matrix .A � �I/�1 has the same eigenvectors as A

and has eigenvalues .�j � �/�1 where f�j g are the eigenvalues of A. Suppose � is close to the
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eigenvalue �i . Then .�i ��/�1 will be large compared to .�j ��/�1 for j ¤ i . If we apply power

iteration to .A��I/�1, the process will converge to a multiple of the eigenvector vi corresponding

to �i . This procedure is called inverse iteration with shifts. Although the power method is not used

in practice, the inverse power method with shifts is frequently used to compute eigenvectors once

an approximate eigenvalue has been obtained.

3.5 Rayleigh Quotient Iteration

The Rayleigh quotient can be used to obtain the shifts at each stage of inverse iteration. The

procedure can be summarized as follows.

1. Choose a starting vector v.0/ of unit magnitude.

2. Let �.0/ D .v0/TAv0 be the corresponding Rayleigh quotient.

3. For k D 1; 2; : : :

Solve
�

A � �.k�1/
�

w D v.k�1/ for w, i.e., compute
�

A � �.k�1/
��1
v.k�1/.

Normalize w to obtain v.k/ D w=kwk.

Let �.k/ D .v.k//TAv.k/ be the corresponding Rayleigh quotient.

It can be shown that the convergence of Rayleigh quotient iteration is ultimately cubic. Cubic

convergence triples the number of significant digits on each iteration.

3.6 The Basic QR Method

The QR method was discovered independently by Francis [6] and Kublanovskaya [11] in 1961.

It is one of the standard methods for finding eigenvalues. The discussion in this section is based

largely on the paper Understanding the QR Algorithm by Watkins [13]. As before, we will assume

that the matrix A is real and symmetric. Therefore, there is an orthonormal basis v1; : : : ; vn such

that Avj D �jvj for each j . We will assume that the eigenvalues �j are ordered so that j�1j �
j�2j � � � � � j�nj.

The QR algorithm can be summarized as follows:
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1. Choose A0 D A

2. For m D 1; 2; : : :

Am�1 D QmRm QR factorization

Am D RmQm

3. Stop when Am is approximately diagonal.

It is probably not obvious what this algorithm has to do with eigenvalues. We will show that theQR

method is a way of organizing simultaneous iteration, which in turn is a multivector generalization

of the power method.

We can apply the power method to subspaces as well as to single vectors. Suppose S is a k-

dimensional subspace. We can compute the sequence of subspaces S;AS;A2S; : : : . Under certain

conditions this sequence will converge to the subspace spanned by the eigenvectors v1; v2; : : : ; vk

corresponding to the k largest eigenvalues of A. We will not provide a rigorous convergence proof,

but we will attempt to make this result seem plausible. Assume that j�kj > j�kC1j and define the

subspaces

T D< v1; : : : ; vk > U D< vkC1; : : : ; vn > :

We will first show that all the null vectors of A lie in U . Suppose v is a null vector of A, i.e.,

Av D 0. We can expand v in terms of the basis v1; : : : ; vn giving

v D c1v1 C � � � C ckvk C ckC1vkC1 C � � � C cnvn:

Thus,

Av D c1�1v1 C � � � C ck�kvk C ckC1�kC1vkC1 C � � � C cn�nvn D 0:

Since the vectors fvj g are linearly independent and j�1j � � � � � j�k j > 0, it follows that c1 D
c2 D � � � D ck D 0, i.e., v belongs to the subspace U . We will now make the additional assumption

S \ U D f0g. This assumption is analogous to the assumption c1 ¤ 0 in the power method. If x

is a nonzero vector in S , then we can write

x D c1v1 C c2v2 C � � � C ckvk .component in T /

C ckC1vkC1 C � � � C cnvn: .component in U/

Thus,

Amx=.�k/
m D c1.�1=�k/

mv1 C � � � C ck�1.�k�1=�k/
mvk�1 C ckvk

C ckC1.�kC1=�k/
mvkC1 C � � � C cn.�n=�k/

mvn:

Since x doesn’t belong to U , at least one of the coefficients c1; : : : ; ck must be nonzero. Notice

that the first k terms on the right-hand-side do not decrease in absolute value as m ! 1 whereas

the remaining terms approach zero. Thus, Amx, if properly scaled, approaches the subspace T as

m ! 1. In the limitAmS must approach a subspace of T . Since S\U D f0g, A can have no null
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vectors in S . Thus, A is invertible on S . It follows that all of the subspaces AmS have dimension

k and hence the limit can not be a proper subspace of T , i.e., AmS ! T as m ! 1.

Numerically, we can’t iterate on an entire subspace. Therefore, we pick a basis of this subspace

and iterate on this basis. Let q0
1 ; : : : ; q

0
k

be a basis of S . Since A is invertible on S , Aq0
1 ; : : : ; Aq

0
k

is a basis of AS . Similarly, Amq0
1 ; : : : ; A

mq0
k

is a basis of AmS for all m. Thus, in principle

we can iterate on a basis of S to obtain bases for AS;A2S; : : : . However, for large m these

bases become ill-conditioned since all the vectors tend to point in the direction of the eigenvector

corresponding to the eigenvalue of largest absolute value. To avoid this we orthonormalize the basis

at each step. Thus, given an orthonormal basis qm
1 ; : : : ; q

m
k

of AmS , we compute Aqm
1 ; : : : ; Aq

m
k

and then orthonormalize these vectors (using something like the Gram-Schmidt process) to obtain

an orthonormal basis qmC1
1 ; : : : ; qmC1

k
of AmC1S . This process is called simultaneous iteration.

Notice that this process of orthonormalization has the property

< Aqm
1 ; : : : ; Aq

m
i >D< qmC1

1 ; : : : ; qmC1
i > for i D 1; : : : ; k:

Let us consider now what happens when we apply simultaneous iteration to the complete set of

orthonormal vectors e1 : : : ; en where ek is the k-th column of the identity matrix. Let us define

Sk D< e1; : : : ; ek >; Tk D< v1; : : : ; vk >; Uk D< vkC1; : : : ; vn >

for k D 1; 2; : : : ; n � 1. We also assume that Sk \ Uk D f0g and j�kj > j�kC1j > 0 for each

1 � k � n � 1. It follows from our previous discussion that AmSk ! Tk as m ! 1. In terms

of bases, the orthonormal vectors qm
1 ; : : : ; q

m
n will converge to and orthonormal basis q1; : : : ; qn

such that Tk D< q1; : : : ; qk > for each k D 1; : : : ; n � 1. Each of the subspaces Tk is invariant

under A, i.e., ATk � Tk. We will now look at a property of invariant subspaces. Suppose T is an

invariant subspace of A. Let Q D .Q1;Q2/ be an orthogonal matrix such that the columns of Q1

is a basis of T . Then

QTAQ D
�

QT
1 AQ1 QT

1AQ2

QT
2 AQ1 QT

2AQ2

�

D
�

QT
1 AQ1 0

0 QT
2AQ2

�

, i.e., the basis consisting of the columns of Q block diagonalizes A. Let Q be the matrix with

columns q1; : : : ; qn. Since each Tk is invariant under A, the matrix QTAQ has the block diagonal

form

QTAQ D
�

A1 0

0 A2

�

where A1 is k � k

for each k D 1; : : : ; n � 1. Therefore, QTAQ must be diagonal. The diagonal entries are the

eigenvalues of A. If we define Am D QT
mAQm where Qm D< qm

1 ; : : : ; q
m
n >, then Am will

become approximately diagonal for large m.

We can summarize simultaneous iteration as follows:
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1. We start with the orthogonal matrixQ0 D I whose columns form a basis

of n-space

2. For k D 1; 2; : : : we compute

Zm D AQm�1 Power iteration step

(3.4a)

Zm D QmRm Orthonormalize columns of Zm (3.4b)

Am D QT
mAQm Test for diagonal matrix: (3.4c)

The QR algorithm is an efficient way to organize these calculations. Equations (3.4a) and (3.4b)

can be combined to give

AQm�1 D QmRm: (3.5)

Combining equations (3.4c) and (3.5), we get

Am�1 D QT
m�1AQm�1 D QT

m�1.QmRm/ D .QT
m�1Qm/Rm D OQmRm (3.6)

where OQm D QT
m�1Qm. Equation (3.5) can be rewritten as

QT
mAQm�1 D Rm: (3.7)

Combining equations (3.4c) and (3.7), we get

Am D QT
mAQm D .QT

mAQm�1/Q
T
m�1Qm D Rm.Q

T
m�1Qm/ D Rm

OQm: (3.8)

Equation (3.6) is a QR factorization of Am�1. Equation (3.8) shows that Am has the same Q

and R factors but with their order reversed. Thus, the QR algorithm generates the matrices Am

recursively without having to computeZm andQm at each step. Note that the orthogonal matrices
OQm and Qm satisfy the relation

OQ1
OQ2 � � � OQk D .QT

0 Q1/.Q
T
1Q2/ � � � .QT

k�1Qk/ D Qk:

We have now seen that theQR method can be considered as a generalization of the power method.

We will see that the QR algorithm is also related to inverse power iteration. In fact we have the

following duality result.

Theorem 3. If A is an n � n symmetric nonsingular matrix and if S and S? are orthogonal

complementary subspaces. Then AmS and A�mS? are also orthogonal complements.

Proof. If x and y are n-vectors, then

x � y D xT y D xTAT .AT /�1y D .Ax/T .AT /�1y D .Ax/TA�1y D Ax � A�1y:

Applying this result repeatedly, we obtain

x � y D Amx � A�my:
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It is clear from this relation that every element in AmS is orthogonal to every element in A�mS?.

Let q1; : : : ; qk be a basis of S and let qkC1; : : : ; qn be a basis of S?. Then Amq1; : : : ; A
mqk

is a basis of AmS and A�mqkC1; : : : ; A
�mqn is a basis of A�mS?. Suppose there exist scalars

c1; : : : ; cn such that

c1A
mq1 C � � � C ckA

mqk C ckC1A
�mqkC1 C � � � C cnA

�mqn D 0: (3.9)

Taking the dot product of this relation with c1A
mq1 C � � � C ckA

mqk , we obtain

kc1A
mq1 C � � � C ckA

mqkk D 0

and hence c1A
mq1C� � �CckA

mqk D 0. SinceAmq1; : : : ; A
mqk are linearly independent, it follows

that c1 D c2 D � � � D ck D 0. In a similar manner we obtain ckC1 D � � � D cn D 0. Therefore,

Amq1; : : : ; A
mqk; A

�mqkC1; : : : ; A
�mqn are linearly independent and hence form a basis for n-

space. Thus, AmS and A�mS? are orthogonal complements.

It can be seen from this theorem that performing power iteration on subspaces Sk is also performing

inverse power iteration on S?
k

. Since

< qm
1 ; : : : ; q

m
k >D< Ame1; : : : ; A

mek >;

Theorem 3 implies that

< qm
kC1; : : : ; q

m
n >D< A�mekC1; : : : ; A

�men > :

For k D n � 1 we have < qm
n >D< A�men >. Thus, qm

n is the result at the m-th step of

applying the inverse power method to en. It follows that qm
n should converge to an eigenvector

corresponding to the smallest eigenvalue �n. Moreover, the element in the n-th row and n-th

column of Am D QT
mAQm should converge to the smallest eigenvalue �n.

The convergence of theQR method, like that of the power method, can be quite slow. To make the

method practical, the convergence is accelerated using shifts as in the inverse power method.

3.6.1 The QR Method with Shifts

Suppose we apply a shift �m at the m-th step, i.e., we replace A by A � �mI . Then the algorithm

becomes

1. Set A0 D A.

2. for k D 1; 2; : : :

Ak�1 � �kI D OQk
ORk QR factorization

Ak D ORk
OQk C �kI:

3. Deflate when eigenvalue converges
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It follows from the QR factorization of Ak�1 � �kI that

OQT
k Ak�1

OQk � �kI D OQT
k .Ak�1 � �kI / OQk D OQT

k
OQk

ORk
OQk D ORk

OQk: (3.10)

Equation (3.10) implies that

Ak D OQT
k Ak�1

OQk: (3.11)

It follows by induction on equation (3.11) that

Ak D OQT
k � � � OQT

1A
OQ1 � � � OQk: (3.12)

If we define

Qk D OQ1 � � � OQk;

then equation (3.12) can be written

Ak D QT
k AQk: (3.13)

Thus, each Ak has the same eigenvalues as A.

Theorem 4. For each k � 1 we have the relation

.A � �kI / � � � .A � �1I / D OQ1 � � � OQk
ORk � � � OR1 D QkRk

where Qk D OQ1 � � � OQk and Rk D ORk � � � OR1.

Proof. For k D 1 the result is just the k D 1 step. Assume that the result holds for some k, i.e.,

.A� �kI / � � � .A� �1I / D QkRk: (3.14)

From the k C 1 step we have

Ak � �kC1I D OQkC1
ORkC1: (3.15)

Combining equations (3.13) and (3.15), we get

Ak � �kC1I D QT
k AQk � �kC1I D QT

k .A� �kC1I /Qk D OQkC1
ORkC1;

and hence

A � �kC1I D Qk
OQkC1

ORkC1Q
T
k D QkC1

ORkC1Q
T
k : (3.16)

Combining equations (3.14) and (3.16), we get

.A� �kC1I /.A� �kI / � � � .A � �1I / D QkC1
ORkC1Q

T
kQkRk D QkC1RkC1;

which is the result for k C 1. This completes the proof by induction

It follows from Theorem 4 that

.A � �kI / � � � .A� �1I /e1 D QkRke1:
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Since Rk is upper triangular, QkRke1 is proportional to the first column of Qk . Thus, the first

column of Qk , apart from a constant multiplier, is the result of applying the power method with

shifts to e1. Taking the inverse of the result in Theorem 4, we obtain

.A � �1I /
�1 � � � .A � �kI /

�1 D R�1
k QT

k : (3.17)

Since for each j the factor A � �j I is symmetric, its inverse .A � �j I /
�1 is also symmetric.

Taking the transpose of equation (3.17), we get

.A � �kI /
�1 � � � .A � �1I /

�1 D Qk

�

R�1
k

�T
: (3.18)

Applying equation (3.18) to en, we get

.A � �kI /
�1 � � � .A � �1I /

�1en D Qk

�

R�1
k

�T
en:

Since
�

R�1
k

�T
is lower triangular,

�

R�1
k

�T
en is a multiple of the last column of Qk. Therefore,

the last column of Qk, apart from a constant multiplier, is the result of applying the inverse power

method with shifts to en. We have yet to say how the shifts are to be chosen. One choice is to

choose �k to be the Rayleigh quotient corresponding the last column of Qk�1. This is readily

available to us since, by equation (3.13), it is equal to the .n; n/ element of Ak�1. By our remarks

on Rayleigh quotient iteration, we should expect cubic convergence to the eigenvalue �n. This

choice of shifts generally leads to convergence, but there are a few matrices for which the process

fails to converge. For example, consider the matrix

A D
�

0 1

1 0

�

:

The unshifted QR algorithm doesn’t converge since

A D OQ1
OR1 D

�

0 1

1 0

��

1 0

0 1

�

A1 D OR1
OQ1 D

�

1 0

0 1

��

0 1

1 0

�

D A:

Thus, all the iterates are equal to A. The Rayleigh quotient shift doesn’t help since A22 D 0.

A shift that does work all the time is the Wilkinson Shift. This shift is obtained by considering

the lower-rightmost 2 � 2 submatrix of Ak�1 and choosing �k to be the eigenvalue of this 2 � 2
submatrix that is closest to the .n; n/ element of Ak�1. When there is sufficient convergence to

the eigenvalue �n, the off-diagonal elements in the last row and column of the Ak matrices will be

very small. We can deflate these matrices by removing the first and last columns, and then �n�1

can be obtained using the deflated matrices. Continuing in this manner we can obtain all of the

eigenvalues.

Until recently, the QR method with shifts (or one of its variants) was the primary method for

computing eigenvalues and eigenvectors. Recently a competitor has emerged called the Divide-

and-Conquer algorithm.
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3.7 The Divide-and-Conquer Method

The Divide-and-Conquer algorithm was first introduced by Cuppen [3] in 1981. As first introduced,

the algorithm suffered from certain accuracy and stability problems. These were not overcome

until a stable algorithm was introduced in 1993 by Gu and Eisenstat [8]. The divide-and-conquer

algorithm is faster than the shifted QR algorithm if the size is greater than about 25 and both

eigenvalues and eigenvectors are required. Let us begin by discussing the basic theory underlying

the method. Let T denote a symmetric tridiagonal matrix for which we desire the eigenvalues and

eigenvectors, i.e., T has the form

T D

ˇ
a1 b1

b1
: : :

: : :
: : : am�1 bm�1

bm�1 am bm

bm amC1 bmC1

bmC1
: : :

: : : bn�1

bn�1 an



: (3.19)
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The matrix T can be split into the sum of two matrices as follows:

T D

ˇ
a1 b1

b1
: : :

: : :
: : : am�1 bm�1

bm�1 am � bm

amC1 � bm bmC1

bmC1
: : :

: : : bn�1

bn�1 an




C

�
bm bm

bm bm

�
D
�

T1 0

0 T2

�

C bm �

0

B

B

B

B

B

B

B

B

B

B

B

@

0
:::

0

1

1

0
:::

0

1

C

C

C

C

C

C

C

C

C

C

C

A

.0; : : : ; 0; 1; 1; 0; : : : ; 0/ D
�

T1 0

0 T2

�

C bm vv
T (3.20)

where m is roughly one half of n, T1 and T2 are tridiagonal, and v is the vector v D em C emC1.

Suppose we have the following eigen decompositions of T1 and T2

T1 D Q1�1Q
T
1 T2 D Q2�2Q

T
2 (3.21)

where �1 and �2 are diagonal matrices of eigenvalues. Then T can be written

T D
�

T1 0

0 T2

�

C bm vv
T

D
�

Q1�1Q
T
1 0

0 Q2�2Q
T
2

�

C bm vv
T

D
�

Q1 0

0 Q2

���

�1 0

0 �2

�

C bmuu
T

��

QT
1 0

0 QT
2

�

(3.22)

where

u D
�

QT
1 0

0 QT
2

�

v:
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Therefore, T is similar to a matrix of the form D C �uuT where D D diag.d1; : : : ; dn/. Thus,

it suffices to look at the eigen problem for matrices of the form D C �uuT . Let us assume first

that � is an eigenvalue of D C �uuT , but is not an eigenvalue of D. Let x be an eigenvector of

D C �uuT corresponding to �. Then

.D C �uuT /x D Dx C �.uTx/u D �x:

and hence

x D ��.uTx/.D � �I/�1u: (3.23)

Multiplying equation (3.23) by uT and collecting terms, we get

.uTx/
�

1C �uT .D � �I/�1u
�

D .uTx/

 

1C �

n
X

kD1

u2
k

dk � �

!

D 0: (3.24)

Since � is not an eigenvalue of D, we must have uT x ¤ 0. Thus,

f .�/ D 1C �

n
X

kD1

u2
k

dk � � D 0: (3.25)

Equation (3.25) is called the secular equation and f .�/ is called the secular function. The eigen-

values of D C �uuT that are not eigenvalues of D are roots of the secular equation. It follows

from equation (3.23) that the eigenvector corresponding to the eigenvalue � is proportional to

.D � �I/�1u. Figure 3.1 shows a plot of an example secular function.

The slope of f .�/ is given by

f 0.�/ D �

n
X

kD1

u2
k

.dk � �/2 :

Thus, the slope (when it exists) is positive if � > 0 and negative if � < 0. Suppose the di are such

that d1 > d2 > � � � > dn and that all the components of u are nonzero. Then there must be a root

between each pair .di ; diC1/. This gives n � 1 roots. Since f .�/ ! 1 as � ! 1 or as � ! �1,

there is another root greater than d1 if � > 0 and a root less than dn if � < 0. This gives n roots.

The only way the secular equation will have less than n roots is if one or more of the components

of u are zero or if one or more of the di are equal. Suppose � is a root of the secular equation. We

will show that x D .D � �I/�1u is an eigenvector of D C �uuT corresponding to the eigenvalue

�. Since � is a root of the secular equation, we have

f .�/ D 1C �uT .D � �I/�1u D 1C �uTx D 0

or �uTx D �1. Since x D .D � �I/�1u, we have

.D � �I/x D Dx � �x D u or Dx � u D �x:

It follows that

.D C �uuT /x D Dx C �.uTx/u D Dx � u D �x

as was to be proved.
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Let us now look at the special cases where there are less than n roots of the secular equation. If

ui D 0, then

.D C �uuT /ei D Dei C �.uT ei/u D Dei C �uiu D Dei D diei ;

i.e., ei is an eigenvector of D C �uuT corresponding to the eigenvalue di .

If di D dj for i ¤ j and either ui or uj is nonzero, then the vector x D ˛ei Cˇej is an eigenvector

of D corresponding to the eigenvalue di for any ˛ and ˇ that are not both zero. We can choose ˛

and ˇ so that

uT x D ˛ui C ˇuj D 0:

For example, ˛ D uj and ˇ D �ui would work. With this choice of ˛ and ˇ, the vector x D
˛ei C ˇej is an eigenvector of D C �uuT corresponding to the eigenvalue di . In this way we can

obtain n eigenvalues and vectors even when the secular equation has less that n roots.

Finding Roots of the Secular Equation The first thought would be to use Newton’s method

to find the roots of f .�/. However, when one or more of the ui are small but not small enough

to neglect, the function f .�/ behaves pretty much like it would if the terms corresponding to the

small ui were not present until � is very close to one of the corresponding di where it abruptly

approaches ˙1. Thus, almost any initial guess will lead away from the desired root. This is
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illustrated in Figure 3.2 where the .5 factor multiplying 1=.2 � �/ in the previous example is

replaced by 0.01. Notice that the curve is almost vertical at the zero crossing near 2. To solve this

−1 0 1 2 3 4 5 6
−6

−4

−2

0

2

4

6

Figure 3.2: Graph of f .�/ D 1C :5
1��

C :01
2��

C :5
3��

C :5
4��

problem, a modified form of Newton’s method is used. Newton’s method approximates the curve

near the guess by the tangent line at the guess and then finds the place where this line crosses zero.

Alternatively, we could approximate f .�/ near the guess by another curve that is tangent to f .�/

at the guess as long as we can find the nearby zero crossing of this curve. If we are looking for a

root between di and diC1, we could use a function of the form

g.�/ D c1 C c2

di � �
C c3

diC1 � � (3.26)

to approximate f .�/. Once c1, c2 and c3 are chosen, the roots of g.�/ can be found by solving the

quadratic equation

c1.di � �/.diC1 � �/C c2.diC1 � �/C c3.di � �/ D 0: (3.27)

Let us write f .�/ as follows

f .�/ D 1C � 1.�/C � 2.�/ (3.28)

where

 1.�/ D
i
X

kD1

u2
k

dk � � and  2.�/ D
n
X

kDiC1

u2
k

dk � �: (3.29)
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Notice that  1 has only positive terms and  2 has only negative terms for diC1 < � < di . If �j is

our initial guess, then we approximate  1 near �j by the function g1 given by

g1.�/ D ˛1 C ˛2

di � � (3.30)

where ˛1 and ˛2 are chosen so that

g1.�j / D  1.�j / and g0
1.�j / D  0

1.�j /: (3.31)

It is easily shown that ˛1 D  1.�j /� .di � �j / 
0
1.�j / and ˛2 D .di � �j /

2 0
1.�j /. Similarly, we

approximate  2 near �j by the function g2 given by

g2.�/ D ˛3 C ˛4

diC1 � � (3.32)

where ˛3 and ˛4 are chosen so that

g2.�j / D  2.�j / and g0
2.�j / D  0

2.�j /: (3.33)

Again it is easily shown that ˛3 D  1.�j /� .diC1 � �j / 
0
2.�j / and ˛4 D .diC1 � �j /

2 0
2.�j /.

Putting these approximations together, we have the following approximation for f near �j

f .�/
:D 1C �g1.�/C �g2.�/ D .1C �˛1 C �˛3/C �˛2

di � � C �˛4

diC1 � � �

c1 C c2

di � � C c3

diC1 � �: (3.34)

This modified Newton’s method generally converges very fast.

Recursive Procedure We have shown how the eigenvalues and eigenvectors of T can be ob-

tained from the eigenvalues and eigenvectors of the smaller matrices T1 and T2. The procedure we

have applied to T can also be applied to T1 and T2. Continuing in this manner we can reduce the

original eigen problem to the solution of a series of 1-dimensional eigen problems and the solution

of a series of secular equations. In practice the recursive procedure is not carried all the way down

to 1-dimensional problems, but stops at some size where the QR method can be applied effec-

tively. We saw previously that the eigenvector corresponding to the eigenvalue � is proportional

to .D � �I/�1u as in equation (3.23). There are a number of subtle issues involved in computing

the eigenvectors this way when there are closely spaced pairs of eigenvalues. The interested reader

should consult the book by Demmel [4] for a discussion of these issues.
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Chapter 4

Iterative Methods

Direct methods for solving systems of equationsAx D b or computing eigenvalues/eigenvectors of

a matrix A become very expensive when the size n of A becomes large. These methods generally

involve order n3 operations and order n2 storage. For large problems iterative methods are often

used. Each step of an iterative method generally involves the multiplication of the matrix A by a

vector v to obtain Av. Since the matrix A is not modified in this process it is often possible to

take advantage of special structure of the matrix in forming Av. The special structure most often

exploited is sparseness (many elements of A zero). Taking advantage of the structure of A can

often drastically reduce the cost of each iteration. The cost of iterative methods also depends on

the rate of convergence. Convergence is usually better when the matrix A is well conditioned.

Therefore, preconditioning of the matrix is often employed prior to the start of iteration. There are

many iterative methods. In this section we will discuss only two: the Lanczos method for eigen

problems and the conjugate gradient method for equation solution.

4.1 The Lanczos Method

As before, we will restrict our attention here to real symmetric matrices. We saw previously that

the power method is an iterative method whose m-th iterate x.m/ is given by x.m/ D Ax.m�1/.

Lanczos had the idea that better convergence could be obtained if we made use of all the iterates

x.0/; Ax.0/; A2x.0/; : : : ; Amx.0/ at the m-th step instead of just the final iterate x.m/. The subspace

generated by x.0/; Ax.0/; : : : ; Am�1x.0/ is called the m-th Krylov subspace and is denoted by Km.

Lanczos showed that you could generate an orthonormal basis q1; : : : ; qm of the Krylov subspace

Km recursively. He then showed that the eigen problem restricted to this subspace is equivalent

to finding the eigenvalues/eigenvectors of the tridiagonal matrix Tm D QT
mAQm where Qm is

the matrix whose columns are q1; : : : ; qm. As m becomes larger some of the eigenvalues of Tm

converge to eigenvalues of A.

61



Let q1 be defined by

q1 D x.0/=kx.0/k (4.1)

and let q2 be given by

q2 D r1=kr1k where r1 D Aq1 � .Aq1 � q1/q1: (4.2)

It is easily verified that r1 � q1 D q2 � q1 D 0. We generate the remaining vectors qk recursively.

Suppose q1; : : : ; qp have been generated. We form

rp D Aqp � .Aqp � qp/qp � .Aqp � qp�1/qp�1 (4.3)

qpC1 D rp=krpk: (4.4)

Clearly, rp � qp D rp � qp�1 D 0 by construction. For s � p � 2 we have

rp � qs D Aqp � qs D qp �Aqs : (4.5)

But, it follows from equations (4.3)–(4.4) that

Aqs D rs C .Aqs � qs/qs C .Aqs � qs�1/qs�1

D krskqsC1 C .Aqs � qs/qs C .Aqs � qs�1/qs�1: (4.6)

Thus, rp �qs D qp �Aqs D 0 since Aqs is a linear combination of vectors qk with k < p. It follows

that qpC1 is orthogonal to all of the preceding qk vectors. We will now show that q1; : : : ; qm is a

basis for the space Km. It follows from equations (4.3) and (4.4) that

< x.0/ >D< q1 > and < x.0/; Ax.0/ >D< q1; q2 > :

Suppose for some k we have

< x.0/; Ax.0/; : : : ; Ak�1x.0/ >D< q1; q2; : : : ; qk > :

Then, Akx.0/ can be written as a linear combination of Aq1; : : : ; Aqk . It follows from equations

(4.3) and (4.4) that Aqi can be written as a linear combination of qi�1, qi , qiC1. Therefore, Akx.0/

can be written as a linear combination of q1; : : : ; qkC1 and hence

< x.0/; Ax.0/; : : : ; Akx.0/ >D< q1; q2; : : : ; qkC1 > :

It follows by induction that q1; : : : ; qm is a basis for Km D< x.0/; Ax.0/; : : : ; Am�1x.0/ >.

Define p̨ D Aqp � qp and p̌ D Aqp � qp�1. Then

p̌ D Aqp � qp�1 D qp � Aqp�1

D qp �
�

krp�1kqp C .Aqp�1 � qp�1/qp�1 C .Aqp�1 � qp�2/qp�2

D krp�1k: (4.7)

It follows from equations (4.3), (4.4), and (4.7) that

Aqp D p̌C1qpC1 C p̨qp C p̌qp�1: (4.8)
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In view of equation (4.8), the matrix Tm D QT
mAQm has the tridiagonal form

Tm D QT
mAQm D

�
˛1 ˇ2

ˇ2 ˛2 ˇ3

: : :
: : :

: : :

ˇm�1 ˛m�1 ˇm

ˇm ˛m

�
: (4.9)

The original eigenvalue problem can be given a variational interpretation. Let a function � be

defined by

�.x/ D Ax � x
x � x : (4.10)

We will show that �.x/ is an eigenvalue of A if and only if x is a stationary point of �, i.e.,

ıh�.x/ D 0 for all h. Since

ıh�.x/ � d

d�
�.x C �h/

ˇ

ˇ

ˇ

�D0
D .x � x/.2Ax � h/� .Ax � x/.2x � h/

.x � x/2

D 2

x � x
h

Ax � Ax � x
x � x x

i

� h; (4.11)

we have

ıh�.x/ D 0 for all h ,
h

Ax � Ax � x
x � x x

i

� h D 0 for all h (4.12a)

, Ax D Ax � x
x � x x D �.x/x: (4.12b)

Suppose in this variational principle we restrict both x and h to the subspace Km. Then x and h

can be expressed in the form x D Qmy and h D Qmw for some y;w 2 R
m. With these relations

equation (4.12a) becomes

h

.AQm/y � .AQm/y �Qmy

Qmy �Qmy
x
i

�Qmw D 0 for all w

or

h

.QT
mAQm/y � .QT

mAQm/y � y
y � y y

i

� w D 0 for all w: (4.13)

Thus the variational principle restricted to Km leads to the reduced eigenvalue problem

Tmy D .QT
mAQm/y D �y: (4.14)

It has been found that the extreme eigenvalues usually converge the fastest with this method. The

biggest numerical problem with this method is that round-off errors cause the vectors fqkg gener-

ated in this way tend to loose their orthogonality as the number of steps increases. It has been found

that this loss of orthogonality increases rapidly whenever one of the eigenvalues of Tm approaches
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an eigenvalue of A . There are a number of methods that counteract this loss of orthogonality by

periodically reorthogonalizing the vectors fqkg based on the convergence of the eigenvalues.

We can give another way of looking at the Lanczos algorithm. Let Km denote the matrix whose

columns are x.0/; Ax.0/; : : : ; Am�1x.0/. We will show that Km has a reduced QR factorization

Km D QmRm whereQm is the matrix occurring in the Lanczos method with columns q1; : : : ; qm.

We have shown previously that

< x.0/ > D< q1 >

< x.0/; Ax.0/ > D< q1; q2 >

:::

< x.0/; Ax.0/; : : : ; Am�1x.0/ > D< q1; q2; : : : ; qm > :

We can express this result in matrix form as

Km D .x.0/; Ax.0/; : : : ; Am�1x.0// D .q1; : : : ; qm/Rm D QmRm (4.15)

where Rm is an upper triangular matrix. This is the reduced QR factorization that we set out to

establish. Of course we don’t want to determineQm andRm directly since the matrixKm becomes

poorly conditioned for large m.

4.2 The Conjugate Gradient Method

The conjugate gradient (CG) method is a widely used iterative method for solving a system of

equations Ax D b when A is symmetric and positive definite. It was first introduced in 1952

by Hestenes and Stiefel [9]. Although this was not the original motivation, the CG method can be

considered as a Krylov subspace method related to the Lanczos method. We assume that q1; q2; : : :

are orthonormal vectors generated using the Lanczos recursion starting with the initial vector b. As

before we let Qk D .q1; : : : ; qk/ and Tk D QT
k
AQk. Since A is positive definite, we can define

an A-norm by

kxk2
A D xTAx: (4.16)

We will show that each iterate xm in the CG method is the unique element of the Krylov subspace

Km that minimizes the error kx � xmkA where x is the solution of Ax D b.

Let rk denote the residual rk D b � Axk . Since q1 D b=kbk, it follows that
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QT
k rk D QT

k .b � Axk/ D QT
k b �QT

k Axk

D

�
qT

1
:::

qT
k

�
b � TkQ

T
k xk

D kbke1 � TkQ
T
k xk

D TkQ
T
k .kbkQkT

�1
k e1 � xk/: (4.17)

If xk is chosen to be

xk D kbkQkT
�1
k e1; (4.18)

then QT
k
rk D 0, i.e., rk is orthogonal to each of the vectors q1; : : : ; qk and hence to every vector

in Kk . It follows from equation (4.18) that xk is a linear combination of q1; : : : ; qk and hence is a

member of Kk . If Ox is an arbitrary element of Kk , then

Ox D xk C ı for some ı in Kk :

Since rk is orthogonal to every vector in Kk , we have

kx � Oxk2
A D .x � Ox/TA.x � Ox/

D .x � xk � ı/TA.x � xk � ı/
D kx � xkk2

A C kık2
A � 2ıTA.x � xk/

D kx � xkk2
A C kık2

A � 2ıT rk

D kx � xkk2
A C kık2

A: (4.19)

Thus kx� Oxk2
A is minimized for ı D 0, i.e., when Ox D xk . We will now develop a simple recursive

method to generate the iterates xk .

The matrix Tk D QT
k
AQk is also positive definite and hence has a Cholesky factorization

Tk D LkDkL
T
k (4.20)

whereLk is unit lower triangular andDk is diagonal with positive diagonals. Combining equations

(4.18) and (4.20), we get

xk D kbkQk.L
�T
k D�1

k L�1
k /e1

D QPkyk (4.21)

where QPk D QkL
�T
k

and yk D kbkD�1
k
L�1

k
e1. We denote the columns of QPk by Qp1: : : : ; Qpk and

the components of yk by �1; : : : ; �k . We will show that the columns of QPk�1 are Qp1: : : : ; Qpk�1 and

the components of yk�1 are �1; : : : ; �k�1. It follows from equation (4.20) and the definition of QPk

that

QP T
k A

QPk D L�1
k QT

k AQkL
�T
k D L�1

k TkL
�T
k

D L�1
k .LkDkL

T
k /L

�T
k D Dk:

65



Thus

QpT
i A Qpj D 0 for all i ¤ j : (4.22)

It is easy to see from equation (4.9) that Tk�1 is the leading .k � 1/ � .k � 1/ submatrix of Tk .

Equation (4.20) can be written

Tk D

˙
1

l1
: : :
: : :

: : :

lk�1 1

�˙
d1

: : :

dk�1

dk

�˙
1

l1
: : :
: : :

: : :

lk�1 1

�T

D
�

Lk�1 0

lk�1e
T
k�1

1

��

Dk�1 0

0 dk

��

Lk�1 0

lk�1e
T
k�1

1

�T

D
�

Lk�1Dk�1L
T
k�1

?

? ?

�

where ? denotes terms that are not significant to the argument. Thus, Lk�1 and Dk�1 are the

leading .k � 1/ � .k � 1/ submatrices of Lk and Dk respectively. Since Lk has the form

Lk D
�

Lk�1 0

? 1

�

;

the inverse L�1
k

must have the form

L�1
k D

�

L�1
k�1

0

? 1

�

:

Therefore, it follows from the definition of yk that

yk � kbkD�1
k L�1

k e1

D kbk
�

D�1
k�1

0

0 1=dk

��

L�1
k�1

0

? 1

�

e1

D kbk
�

D�1
k�1
L�1

k�1
0

? 1=dk

�

e1

D kbk
�

D�1
k�1
L�1

k�1
0

? 1=dk

��

e1

0

�

e1 is here a .k � 1/-vector

D
�

kbkD�1
k�1
L�1

k�1
e1

�k

�

D
�

yk�1

�k

�

;

i.e., yk�1 consists of the first k � 1 components of yk . It follows from the definition of QPk that

QPk � QkL
�T
k

D .Qk�1; qk/

�

L�T
k�1

?

0 1

�

D .Qk�1L
�T
k�1; Qpk/ D . QPk�1; Qpk/;
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i.e., QPk�1 consists of the first k � 1 columns of QPk .

We now develop a recursion relation for xk . It follows from equation (4.21) that

xk D QPkyk

D . QPk�1; Qpk/

�

yk�1

�k

�

D QPk�1yk�1 C �k Qpk

D xk�1 C �k Qpk: (4.23)

We now develop a recursion relation for Qpk . It follows from the definition of QPk that

QPkL
T
k D Qk

or

. Qp1; : : : ; Qpk/

˙
1 l1
: : :

: : :
: : : lk�1

1

�
D .q1; : : : ; qk/: (4.24)

Equating the k-th columns in equation (4.24), we get

lk�1 Qpk�1 C Qpk D qk

or

Qpk D qk � lk�1 Qpk�1: (4.25)

Next we develop a recursion relation for the residuals rk . Multiplying equation (4.23) by A and

subtracting from b, we obtain

rk D rk�1 � �kA Qpk: (4.26)

Since xk�1 belongs to Kk�1, it follows that Axk�1 belongs to Kk . Since b also belongs to Kk , it

is clear that rk�1 D b �Axk�1 is a member of Kk . Since rk�1 and qk both belong to Kk and both

are orthogonal to Kk�1, they must be parallel. Thus,

qk D rk�1

krk�1k : (4.27)

We now define pk by

pk D krk�1k Qpk: (4.28)

Substituting equations (4.27) and (4.28) into equations (4.23), (4.26), and (4.25), we get

xk D xk�1 C �k

krk�1kpk D xk�1 C �kpk (4.29a)

rk D rk�1 � �k

krk�1kpk D rk�1 � �kApk (4.29b)

pk D krk�1kqk � lk�1krk�1k
krk�2k pk�1 D rk�1 C �kpk�1: (4.29c)

67



Here we have used the definitions

�k D �k

krk�1k
and

�k D � lk�1krk�1k
krk�2k :

Equations (4.29a), (4.29b), and (4.29c) are our three basic recursion relations. We next develop

a formula for �k. Since rk�1 D krk�1kqk and rk is orthogonal to Kk , multiplication of equation

(4.29b) by rT
k�1

gives

0 D rT
k�1rk D krk�1k2 � �kr

T
k�1Apk:

Thus

�k D krk�1k2

rT
k�1
Apk

: (4.30)

Multiplying equation (4.29c) by pT
k
A, we get

pT
k Apk D pT

k Ark�1 C 0 D rT
k�1Apk: (4.31)

Combining equations (4.30) and (4.31), we obtain the desired formula

�k D krk�1k2

pT
k
Apk

: (4.32)

We next develop a formula for �k . In view of equations (4.22) and (4.28), multiplication of equa-

tion (4.29c) by pT
k�1
A, gives

0 D pT
k�1Apk D pT

k�1Ark�1 C �kp
T
k�1Apk�1

or

�k D �
pT

k�1
Ark�1

pT
k�1
Apk�1

: (4.33)

Multiplying equation (4.29b) by rT
k

, we get

rT
k rk D 0 � �kr

T
k Apk

or

�k D �
rT

k
rk

rT
k
Apk

D � krkk2

rT
k
Apk

: (4.34)

Combining equations (4.32) and (4.34), we get

� krkk2

rT
k
Apk

D krk�1k2

pT
k
Apk

: (4.35)

Evaluating equation (4.35) for k D k� 1 and combining the result with equation (4.33), we obtain

the desired formula

�k D �
pT

k�1
Ark�1

pT
k�1
Apk�1

D krk�1k2

krk�2k2
: (4.36)
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We can now summarize the CG algorithm

1. Compute the initial values x0 D 0, r0 D b, and p1 D b.

2. For k D 1; 2; : : : compute

z D Apk Save Apk

�k D krk�1k2=pT
k z New step length

xk D xk�1 C �kpk Update approximation

rk D rk�1 � �kz New residual

�kC1 D krkk2=krk�1k2 Improvement of residual

pkC1 D rk C �kC1pk New search direction

3. Stop when krkk is small enough.

Notice that the algorithm at each step only involves one matrix vector product, two dot products

(by saving krkk2 at each step), and three linear combinations of vectors. The storage required is

only four vectors (current values of z, r , x, and p) in addition to the matrix A. As with all iterative

methods, the convergence is fastest when the matrix is well conditioned. The convergence also

depends on the distribution of eigenvalues.

4.3 Preconditioning

The convergence of iterative methods often depends on the condition of the underlying matrix as

well as the distribution of its eigenvalues. The convergence can often be improved by applying

a preconditioner M�1 to A, i.e., we consider the matrix M�1A in place of A. If we are solving

a system of equations Ax D b, this system can be replaced by M�1Ax D M�1b. The matrix

M�1A might be better suited for an iterative method. Of course M must be fairly simple to

compute, or the advantage might be lost. We often try to choose M so that it approximates A in

some sense. If the original A was symmetric and positive definite, we generally choose M to be

symmetric and positive definite. However,M�1A is generally not symmetric and positive definite

even when both A and M are. If M is symmetric and positive definite, then M D EET for

some E (possible obtained by a Cholesky factorization). The system of equations Ax D b can be

replaced by .E�1AE�T / Ox D E�1b where Ox D ET x. The matrix E�1AE�T is symmetric and

positive definite. Since

E�T .E�1AE�T /ET D M�1A; Similarity Transformation

E�1AE�T has the same eigenvalues as M�1A.

The choice of a good preconditioner is more of an art than a science. The following are some of
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the ways M might be chosen:

1. M can be chosen to be the diagonal of A, i.e., M D diag.a11; a22; : : : ; ann/.

2. M can be chosen on the basis of an incomplete Cholesky or LU factorization of A. If A

is sparse, then the Cholesky factorization A D LLT will generally produce an L that is

not sparse. Incomplete Cholesky factorization uses Cholesky-like formulas, but only fills in

those positions that are nonzero in the original A. If OL is the factor obtained in this manner,

we take M D OL OLT .

3. If a system of equations is obtained by a discretization of a differential or integral equation,

it is sometimes possible to use a coarser discretization and interpolation to approximate the

system obtained using a fine discretization.

4. If the underlying physical problem involves both short-range and long-range interactions, a

preconditioner can sometimes be obtained by neglecting the long-range-interactions.

5. If the underlying physical problem can be broken up into nonoverlapping domains, then a

preconditioner might be obtained by neglecting interactions between domains. In this way

M becomes a block diagonal matrix.

6. Sometimes the inverse operator A�1 can be expressed as a matrix power series. An approx-

imate inverse can be obtained by truncating this series. For example, we might approximate

A�1 by a few terms of the Neumann series A�1 D I C .I � A/C .I � A/2 C � � � .

There are many more preconditioners designed for particular types of problems. The user should

survey the literature to find a preconditioner appropriate to the problem at hand.
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